Geometria Molecular e Teoria de Ligação de Valência

Geometrias Moleculares

- ✓ As estruturas de Lewis não indicam a forma das moléculas, mostrando apenas o número e os tipos de ligações.
- ✓ A forma de uma molécula é determinada por seus ângulos de ligação, ângulos formados pelas linhas que se unem ao núcleo dos átomos da molécula.

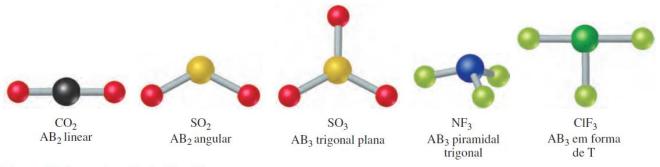


Figura 9.2 Formas de moléculas AB₂ e AB₃.

Geometrias Moleculares

✓ Começamos nossa discussão com moléculas que têm a fórmula geral AB_n, na qual o átomo central A está ligado a n átomos de B (extremidades).

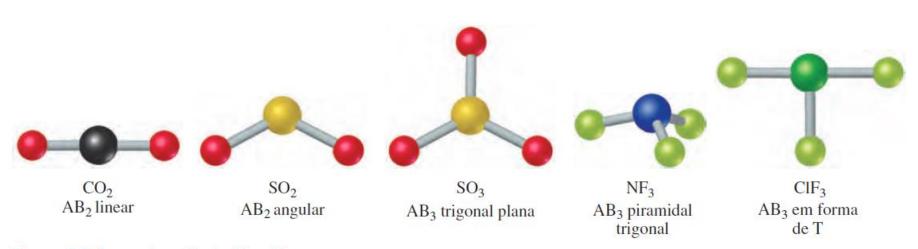
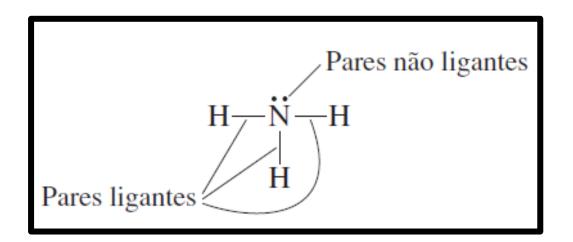
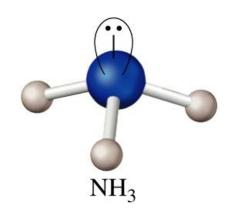


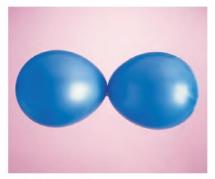
Figura 9.2 Formas de moléculas AB₂ e AB₃.


Geometrias Moleculares


✓ Podemos prever geometrias?

✓ Quando A é um elemento <u>representativo</u> usamos o modelo de repulsão de pares de elétrons da camada de valência (VSEPR).

- ✓ O VSEPR se baseia no comportamento dos elétrons nas moléculas.
- ✓ Um par de elétrons ligantes pode definir a região, denominada domínio eletrônico, na qual os elétrons são encontrados com maior probabilidade.
- ✓ Da mesma maneira, um par de elétrons não ligantes (ou par isolado) define um domínio eletrônico que está localizado predominantemente em um único átomo.


✓ Utilizando a amônia como exemplo:

✓ Cada par não ligante, ligação simples ou ligação múltipla produz um único domínio eletrônico ao redor do átomo central de uma molécula.

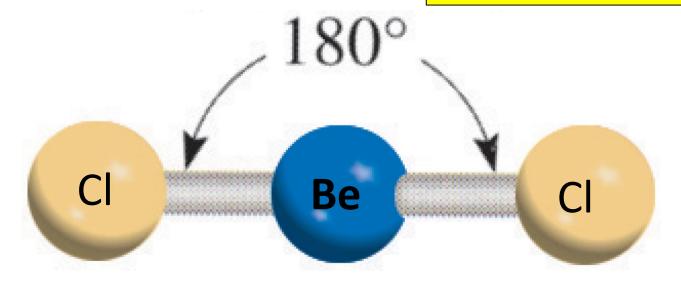
- ✓ O modelo VSEPR é baseado na ideia de que os domínios eletrônicos são carregados negativamente e, portanto, se repelem.
- ✓ O melhor arranjo para um determinado número de domínios eletrônicos é aquele que minimiza as repulsões entre eles.

Dois balões com orientação linear

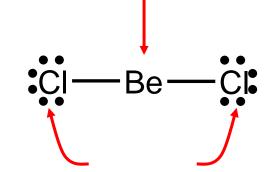
Três balões com orientação trigonal plana

Quatro balões com orientação tetraédrica

Previsão da Geometria Molecular


1. Desenhe a estrutura de Lewis para a molécula ou íon;

2. Conte o número de pares solitários no átomo central e o número de átomos ligados ao átomo central;


3. Use VSEPR para prever a geometria da molécula.

Nev BeCl₂ =
$$(2x1) + (7x2) = 16$$
 ev

Cloreto de Berílio

0 (sem) par de elétrons no átomo central

2 átomos ligados ao átomo central

Valence shell electron pair repulsion (VSEPR):

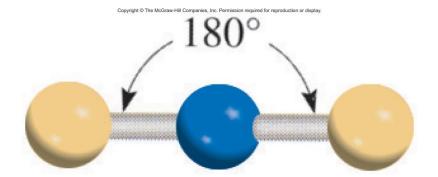
Previsão da geometria de uma molécula a partir das repulsões eletrostáticas entre os pares de elétrons (ligantes e não ligantes).

de átomos
Ligados ao
Classe átomo central
AB₂
2

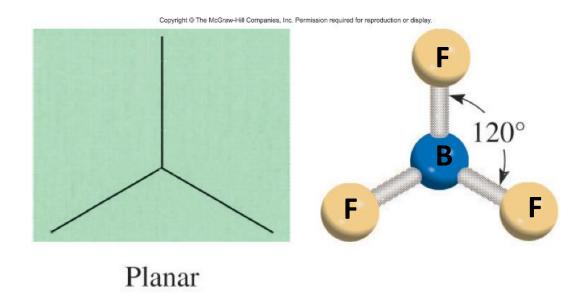
pares de elétrons não compartilhados pelo átomo central

0

Arranjo dos pares de elétrons

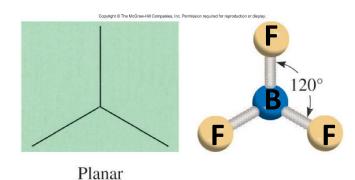

linear

:___A___:


Geometria Molecular

linear

в <u>— А</u> в

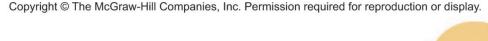

Trifluoreto de Boro (BF₃)

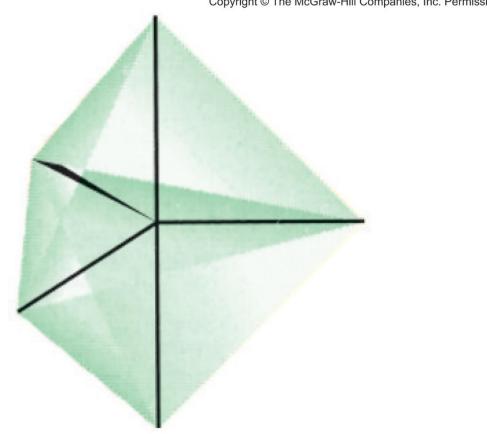
Nev
$$BF_3 = (3x1) + (7x3) = 24 \text{ ev}$$

Classe	# de átomos Ligados ao átomo central	# pares de elétrons não compartilhados pelo átomo central	Arranjo dos pares de elétrons	Geometria Molecular
AB_2	2	0	linear	linear
AB_3	3	0	trigonal planar	trigonal planar
			120°	A

Trifluoreto de Boro (BF₃)

12


Classe	# de átomos Ligados ao átomo central	# pares de elétrons não compartilhados pelo átomo central	Arranjo dos pares de elétrons	Geometria Molecular
AB_2	2	0	linear	linear
AB_3	3	0	trigonal planar	trigonal planar
AB_4	4	0	tetraédrica	tetraédrica
	4 (011)		109.5°	N B

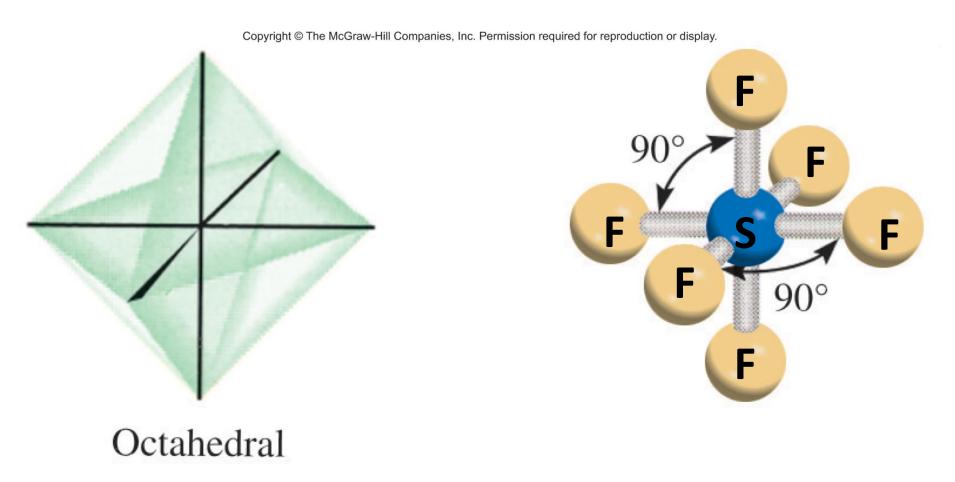


Tetrahedral

Nev
$$CH_4 = (4x1) + (1x4) = 8 \text{ ev}$$

Penta-Cloreto de Fósforo

CI


Trigonal bipyramidal

Nev $PCI_5 = (5x1) + (7x5) = 40 \text{ ev}$

Classe	# de átomos Ligados ao átomo central	# pares de elétrons não compartilhados pelo átomo central	Arranjo dos pares de elétrons	Geometria Molecular
AB_2	2	0	linear	linear
AB_3	3	0	trigonal planar	trigonal planar
AB_4	4	0	tetraédrica	tetraédrica
AB ₅	5	0	Bipiramidal trigonal	Bipiramidal trigonal
Pent	a-Cloreto de	e Fósforo	120°	B B B

 (PCI_5)

Hexafluoreto de Enxofre SF₆

Nev
$$SF_6$$
= $(6x1) + (7x6) = 48 ev$

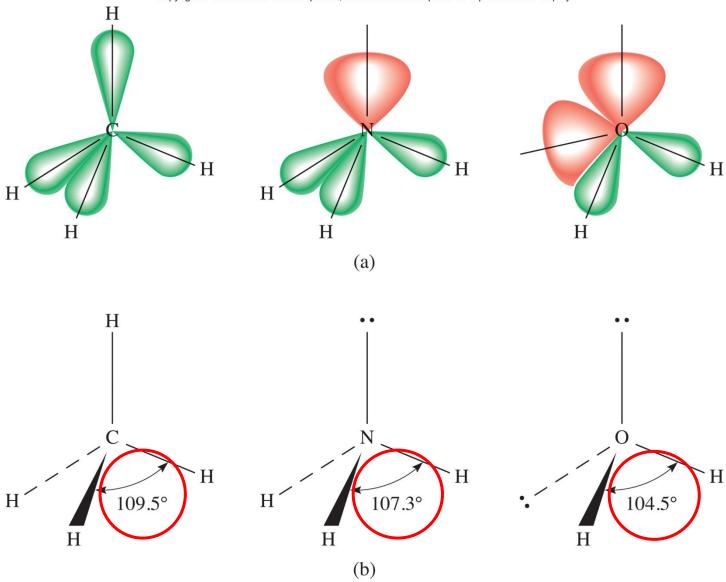

Classe	# de átomos Ligados ao átomo central	# pares de elétrons não compartilhados pelo átomo central	Arranjo dos pares de elétrons	Geometria Molecular
AB_2	2	0	linear	linear
AB_3	3	0	trigonal planar	trigonal planar
AB_4	4	0	tetraédrica	tetraédrica
AB ₅	5	0	Bipiramidal trigonal	Bipiramidal trigonal
AB_6	6	0	octaédrica	octaédrica
Hexafl	luoreto de E SF ₆	Enxofre	90°	B B B

Table 10.1

Arrangement of Electron Pairs About a Central Atom (A) in a Molecule and Geometry of Some Simple Molecules and Ions in Which the Central Atom Has No Lone Pairs

	III WIIICII tile Gentral Atom	ride ite zene i dire	
Number of Electron Pairs	Arrangement of Electron Pairs*	Molecular Geometry*	Examples
2	:——A——:	В—А—В	BeCl ₂ , HgCl ₂
3	Linear 120° Trigonal planar	Linear B B B Trigonal planar	BF ₃
4	: 109.5° : Tetrahedral	B B B B Tetrahedral	CH ₄ , NH ₄ ⁺
5	Trigonal bipyramidal	B B B B B B B B B B B B B B B B B B B	PCl ₅
6	90° Octahedral	B B B B Octahedral	SF_6

^{*}The colored lines are used only to show the overall shapes; they do not represent bonds.

Classe	# de átomos Ligados ao átomo central	# pares de elétrons não compartilhados pelo átomo central	Arranjo dos pares de elétrons	Geometria Molecular
AB_3	3	0	trigonal planar	trigonal planar
AB_2E	2	1	trigonal planar	angular
			B	

Nev
$$O_3$$
 = (6x3) = 18 ev

Classe	# de átomos Ligados ao átomo central	# pares de elétrons não compartilhados pelo átomo central	Arranjo dos pares de elétrons	Geometria Molecular
AB_4	4	0	tetraédrica	tetraédrica
AB_3E	3	1	tetraédrica	Piramidal
			BAAB	NH ₃

Nev
$$NH_3 = (5x1) + (1x3) = 8 \text{ ev}$$

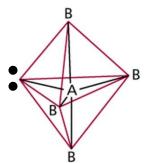
Classe	# de átomos Ligados ao átomo centra	elétrons não compartilhados	Arranjo dos pares de elétrons	Geometria Molecular
AB_4	4	0	tetraédrica	tetraédrica
AB_3E	3	1	tetraédrica	Piramidal
AB_2E_2	2	2	tetraédrica	angular
			B A B	H ₂ O
		Nev $H_2O=$ (1x	(2) + (6x1) = 8 ev	

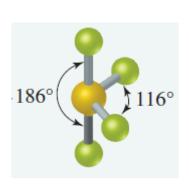
Classe	# de átomos Ligados ao átomo central
AB ₅	5
AB_4E	4

pares de elétrons não compartilhados pelo átomo central

Arranjo dos pares de elétrons

Geometria Molecular


Bipiramidal trigonal


Bipiramidal trigonal

Bipiramidal trigonal

Tetraedro distorcido

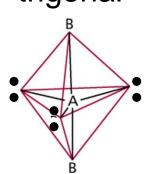
Nev
$$(SF_4) = (6x1) + (7x4) = 34 \text{ ev}$$

Classe	# de átomos Ligados ao átomo central	# pares de elétrons não compartilhados pelo átomo central	Arranjo dos pares de elétrons	Geometria Molecular
AB_5	5	0	Bipiramidal trigonal	Bipiramidal trigonal
AB_4E	4	1	Bipiramidal trigonal	Tetraedro distorcido
AB_3E_2	3	2	Bipiramidal trigonal	Forma em T
			• AA	

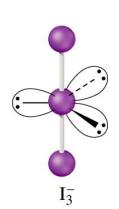
Nev
$$(CIF_3) = (7x1) + (7x3) = 28 \text{ ev}$$

 ClF_3

Classe	# de átomos Ligados ao átomo central	# pares de elétrons não compartilhados pelo átomo central
AB_5	5	0
AB_4E	4	1
AB_3E_2	3	2
AB_2E_3	2	3
	•	


Arranjo dos pares de elétrons

Geometria Molecular


Bipiramidal trigonal Bipiramidal trigonal Bipiramidal trigonal Bipiramidal trigonal Tetraedro distorcido

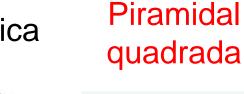
Forma em T

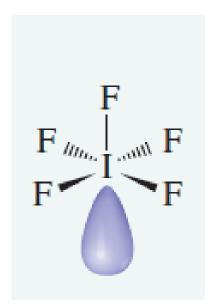
Bipiramidal trigonal

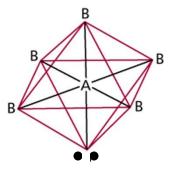
linear

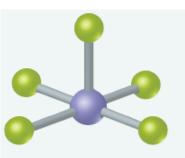
Classe	# de átomos Ligados ao átomo central
AB_6	6
AB ₅ E	5

pares de elétrons não compartilhados pelo átomo central


Arranjo dos pares de elétrons


Geometria Molecular


octaédrica


octaédrica

octaédrica

Nev (
$$IF_5$$
) = $(7x1) + (7x5) = 42 ev$

Classe	# de átomos Ligados ao átomo central	# pares de elétrons não compartilhados pelo átomo central	Arranjo dos pares de elétrons	Geometria Molecular
AB_6	6	0	octaédrica	octaédrica
AB ₅ E	5	1	octaédrica	Piramidal quadrada
AB_4E_2	4	2	octaédrica • •	Quadrado planar
			B B B	
				XeF_4

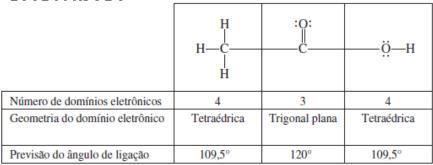

Nev
$$(XeF_4) = (8x1) + (7x4) = 36 \text{ ev}$$

Table 10.2 Geometry of Simple Molecules and Ions in Which the Central Atom Has One or More Lone Pairs

Class of Molecule	Total Number of Electron Pairs	Number of Bonding Pairs	Number of Lone Pairs	Arrangement of Electron Pairs*	Geometry of Molecule or Ion	Examples
AB_2E	3	2	1	B B B Trigonal planar	Bent	SO ₂
AB ₃ E	4	3	1	B A B B Tetrahedral	Trigonal pyramidal	NH ₃
AB_2E_2	4	2	2	A B Tetrahedral	Bent	H ₂ O
$\mathrm{AB_4E}$	5	4	1	B B B B B B B B B B B B B B B B B B B	Distorted tetrahedron (or seesaw)	SF ₄
AB_3E_2	5	3	2	B A B Trigonal bipyramidal	T-shaped	CIF ₃
AB_2E_3	5	2	3	B A B Trigonal bipyramidal	Linear	
AB ₅ E	6	5	1	B B B B B Coctahedral	Square pyramidal	BrF ₅
AB_4E_2	6	4	2	B A B B Octahedral	Square planar	XeF ₄

^{*}The colored lines are used to show the overall shape, not bonds.

✓ Apesar de as moléculas e os íons que consideramos conterem apenas um átomo central, o modelo VSEPR pode ser estendido às moléculas mais complexas. Podemos usar o modelo VSEPR para prever a geometria de cada átomo do ácido acético, por exemplo:

A polaridade de uma molécula refere-se às concentrações de cargas da nuvem eletrônica em volta da molécula.

Molécula polar - A soma vetorial, dos vetores de polarização é diferente de zero.

Moléculas polares possuem maior concentração de carga negativa numa parte da nuvem e maior concentração positiva no outro extremo.

Molécula apolar - A soma vetorial, dos vetores de polarização é nula.

Nas moléculas apolares, a carga eletrônica está uniformemente distribuída, ou seja, não há concentração de carga sobre apenas um átomo.

✓ Para uma molécula com mais de dois átomos, o momento de dipolo depende tanto das polaridades das ligações individuais quanto da geometria da molécula.

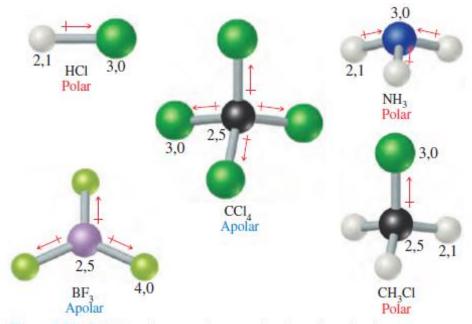


Figura 9.12 Moléculas polares e apolares com ligações polares. Os números representam os valores de eletronegatividade.

✓ Para cada ligação na molécula, consideramos o dipolo da ligação, que é o momento de dipolo devido apenas aos dois átomos presentes naquela ligação.

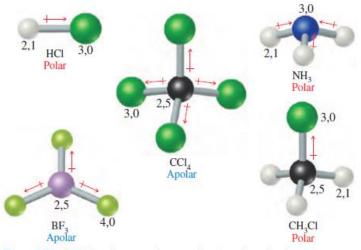


Figura 9.12 Moléculas polares e apolares com ligações polares. Os números representam os valores de eletronegatividade.

✓ Os dipolos da ligação e os momentos de dipolo são quantidades vetoriais, ou seja, ambos têm uma magnitude e uma direção.

✓ O <u>momento de dipolo</u> de uma molécula poliatômica representa a <u>SOMA</u> dos vetores dos seus dipolos de ligação.

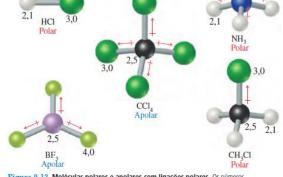


Figura 9.12 Moléculas polares e apolares com ligações polares. Os números representam os valores de eletronegatividade.

- ➤ Uma maneira prática e eficaz de se determinar a polaridade das moléculas é analisar a quantidade de nuvens eletrônicas que estão ao redor do átomo do elemento central e relacioná-la com a quantidade de átomos ou grupos de átomos ligados a ele.
- Se o número for o mesmo, a molécula é apolar. Se não for, é polar.

Moléculas APOLARES

Quantidade de
Nuvens
Eletrônicas ao
Redor do Átomo
Central

Quantidade de Átomos Iguais Ligados ao Átomo Central

Moléculas POLARES

Quantidade
de Nuvens
Eletrônicas ao
Redor do
Átomo
Central

Quantidade de Átomos Iguais Ligados ao Átomo Central

> Exemplos de determinação da polaridade:

Fórmula eletrônica	Quantidade de nuvens eletrônicas ao redor do átomo central	Quantidade de átomos iguais ligados ao átomo central	Polaridade
o⊜c⊜o	2	2	Apolar
H ⊕ H ⊕ C ⊕ H	4	4	Apolar
н⊜8⊜н	4	2	Polar
СІ П Н 😅 С 🕮 СІ СІ	4	3	Polar

Fórmula molecular	Geometria	Vetores	$\overline{\mu_r}$	Molécula
HCℓ	$\overset{+\delta}{\mathrm{H}} - \overset{-\delta}{\mathrm{C}\ell}$	H ↓ Cℓ	$\vec{\mu}_{\rm r} \neq 0$	polar
CO ₂		$O \stackrel{\longleftarrow}{\overrightarrow{\mu}} C \stackrel{\longleftarrow}{\overrightarrow{\mu}} O$	$\vec{\mu}_{\rm r} = 0$	apolar
H₂O	-δ-δ Ο Η Η +δ +δ	ОНН	$\vec{\mu}_r \neq 0$	polar
NH ₃	$ \begin{array}{c c} -\delta^{-\delta}_{N} - \delta \\ N \\ \downarrow \\ H \\ +\delta \\ +\delta \\ +\delta \end{array} $	N H H H	$\vec{\mu}_r \neq 0$	polar

Ligação Covalente e Sobreposição Orbital

- ✓ O modelo VSEPR fornece um meio simples para prever as geometrias moleculares, mas não explica por que as ligações entre os átomos são formadas.
- ✓ A união entre a noção de Lewis das ligações entre os pares de elétrons e a ideia dos orbitais atômicos levou a um modelo de ligação química, chamado teoria da ligação de valência

Ligação Covalente e sobreposição orbital

- ✓ Teoria da Ligação de Valência (TLV): na qual pares de elétrons ligantes se concentram nas regiões entre os átomos, e os pares de elétrons não ligantes ficam em regiões específicas no espaço.
- ✓ De acordo com essa teoria, o acúmulo de densidade eletrônica entre os dois núcleos ocorre quando um orbital atômico de valência de um dos átomos compartilha espaço, ou se sobrepõe, com o orbital atômico de outro átomo. A sobreposição de orbitais permite que dois elétrons de spin oposto compartilhem o espaço entre os núcleos, formando uma ligação covalente.

Ligação Covalente e sobreposição orbital

- ✓ Existe sempre uma distância ideal entre os dois núcleos em qualquer ligação covalente.
- ✓ A distância internuclear no vale da curva de energia potencial corresponde ao comprimento da ligação da molécula. A energia potencial nesse vale corresponde à força da ligação.

Ligação Covalente e sobreposição orbital

✓ Dessa maneira, o comprimento da ligação observado é a distância na qual as forças de atração entre cargas diferentes (elétrons e núcleos) são equilibradas por forças repulsivas entre cargas iguais (elétron—elétron e núcleo—núcleo).

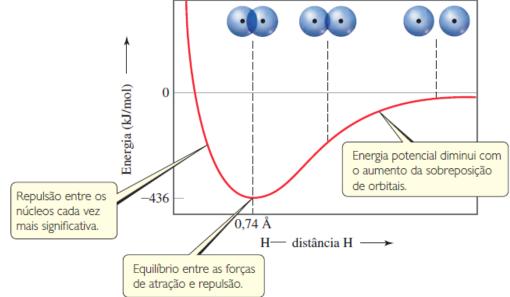
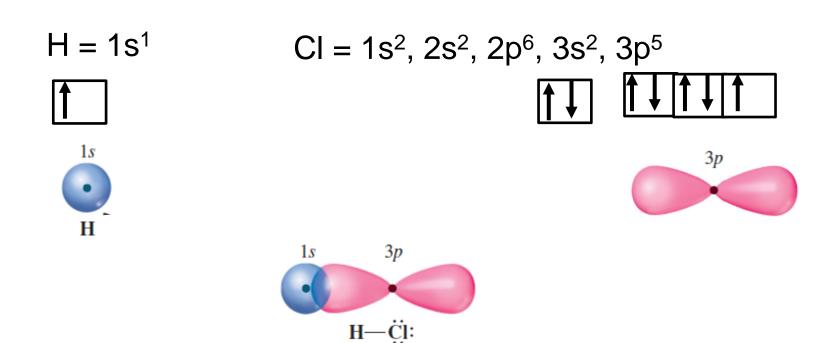
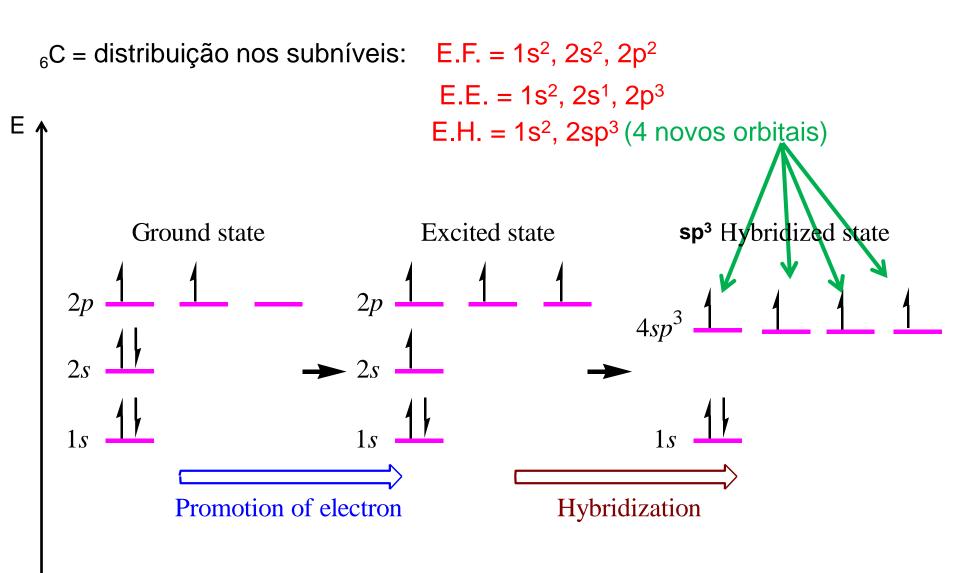



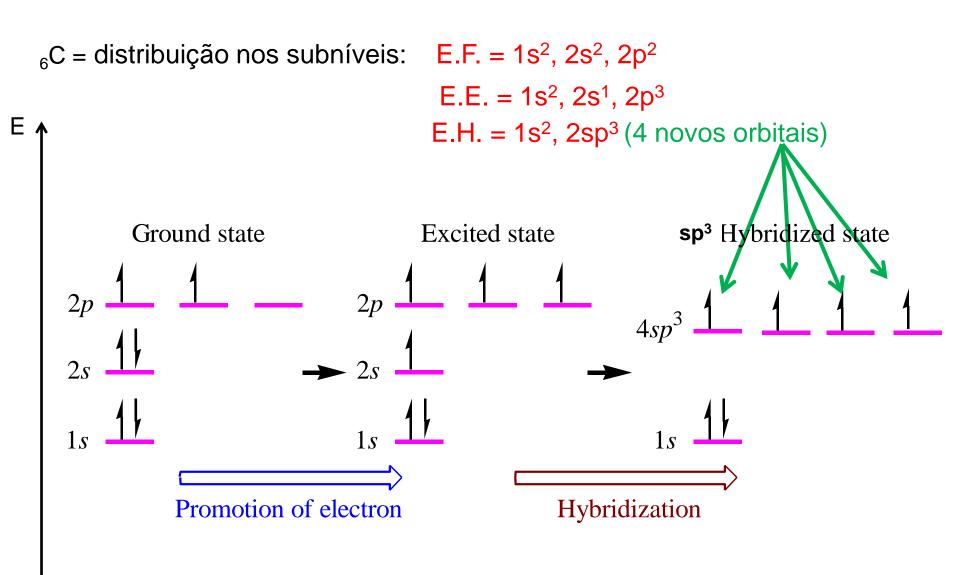
Figura 9.14 Formação da molécula de H₂ à medida que os orbitais atômicos se sobrepõem.

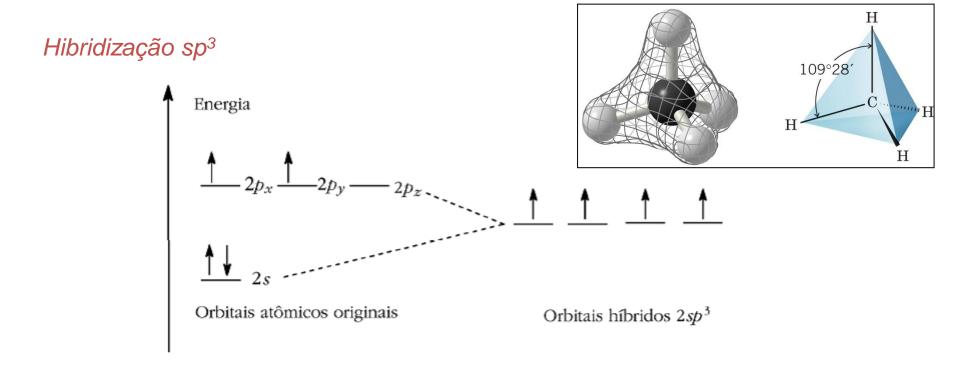
TLV e sobreposição orbital

Formação da molécula de HCI

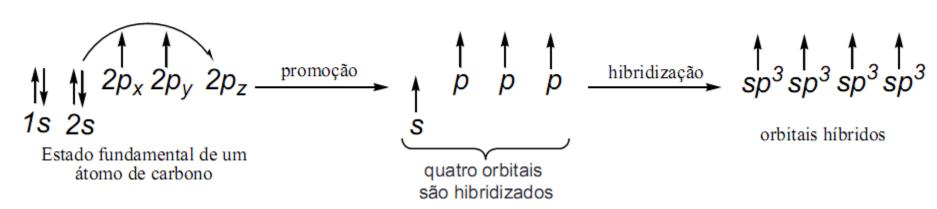

TLV e sobreposição orbital

$$CI = 1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p^{5}$$
 $CI = 1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p^{5}$
 $CI = 1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p^{5}$

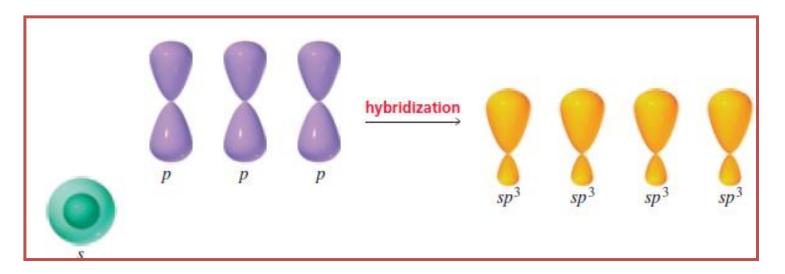

Formação da molécula de Cl₂

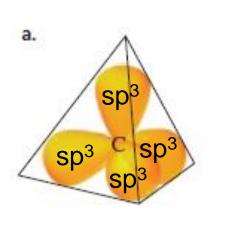

Hibridização

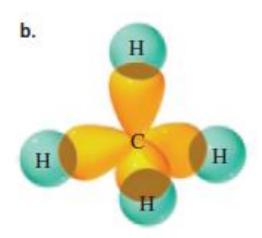
Representação em quadrícula dos orbitais atômicos para o metano - *Hibridização sp*³

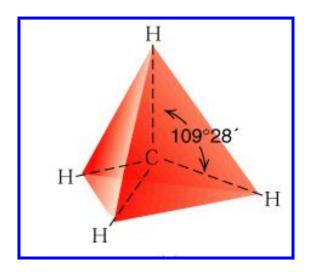


Representação em quadrícula dos orbitais atômicos para o metano - *Hibridização sp*³

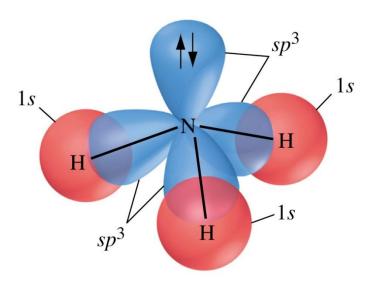


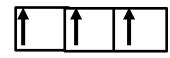


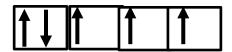

O carbono no metano está ligado a quatro átomos, de modo que ele hibridiza quatro orbitais – um "s" e três "p".



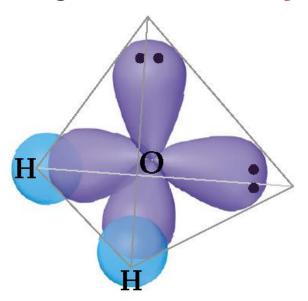
Representação dos orbitais atômicos para o metano Hibridização sp³



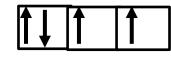

Representação da Amônia: *Hibridização sp*³

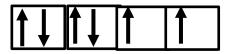

₇N = distribuição nos subníveis:

E.F. =
$$1s^2$$
, $2s^2$, $2p^3$

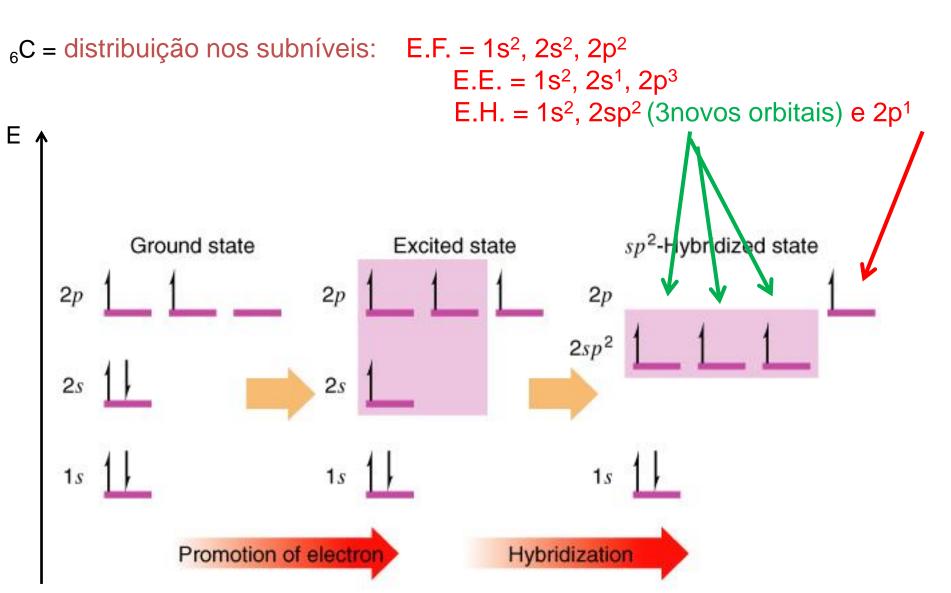


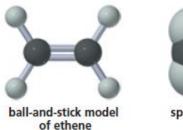
E.H. = $1s^2$, $2sp^3$ (4 novos orbitais)

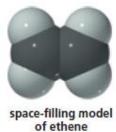

Representação da Água: Hibridização sp³


₈O= distribuição nos subníveis:

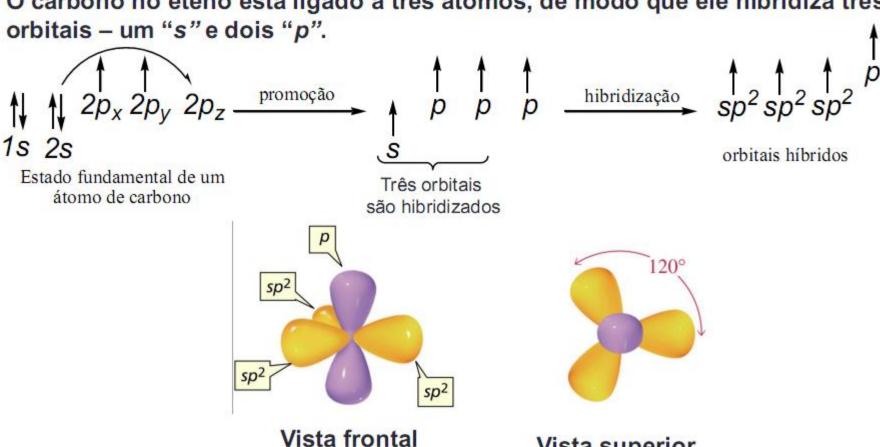
E.F. =
$$1s^2$$
, $2s^2$, $2p^4$



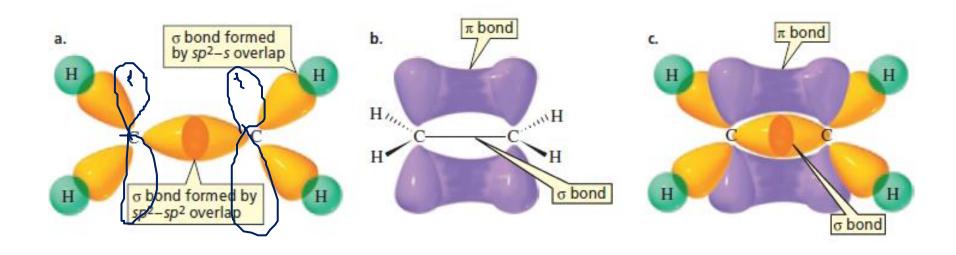

E.H. = $1s^2$, $2sp^3$ (4 novos orbitais)

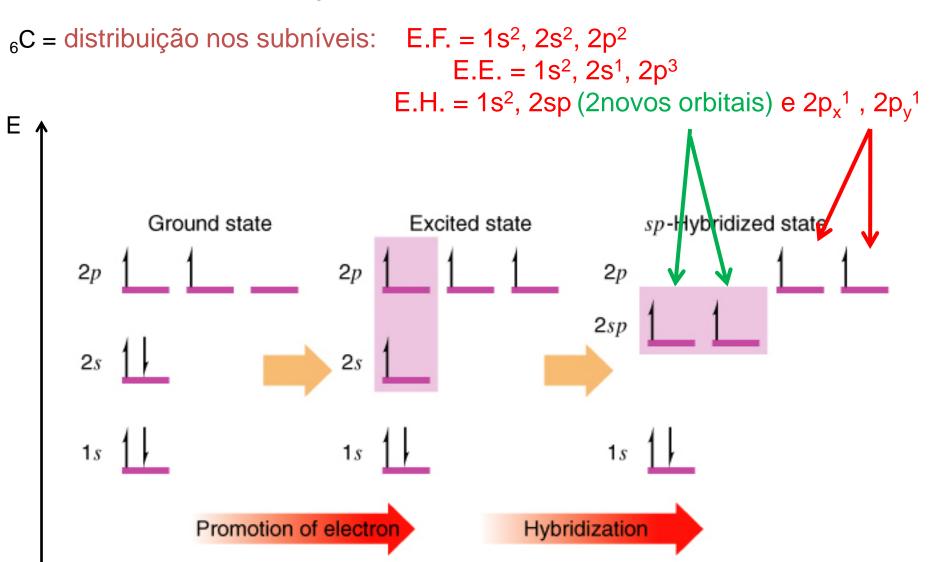


Representação em quadrícula dos orbitais atômicos para o eteno - Hibridização sp²

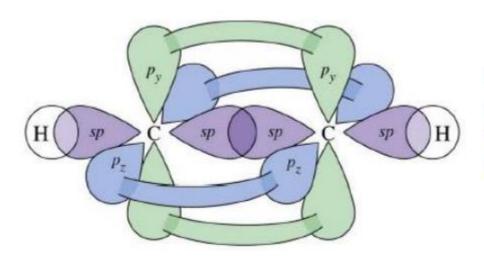


Representação dos orbitais atômicos para o eteno Hibridização sp²


O carbono no eteno está ligado a três átomos, de modo que ele hibridiza três

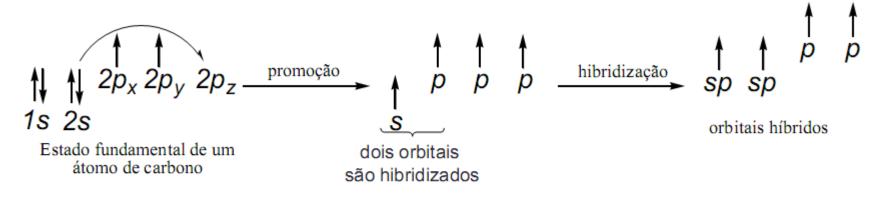

Vista superior

Representação dos orbitais atômicos para o eteno Hibridização sp²


Repetindo...

Representação em quadrícula dos orbitais atômicos para o etino - *Hibridização sp*

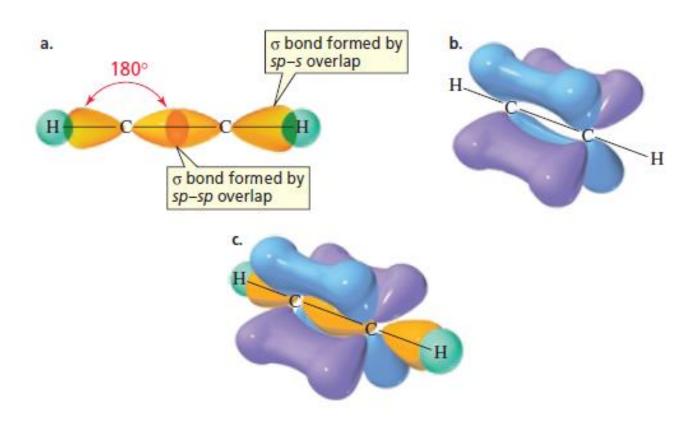
Representação dos orbitais atômicos para o etino Hibridização sp


Observe que, neste caso, o carbono deve reservar 2 orbitais p puros (sem hibridizar) para fazer as ligações π .

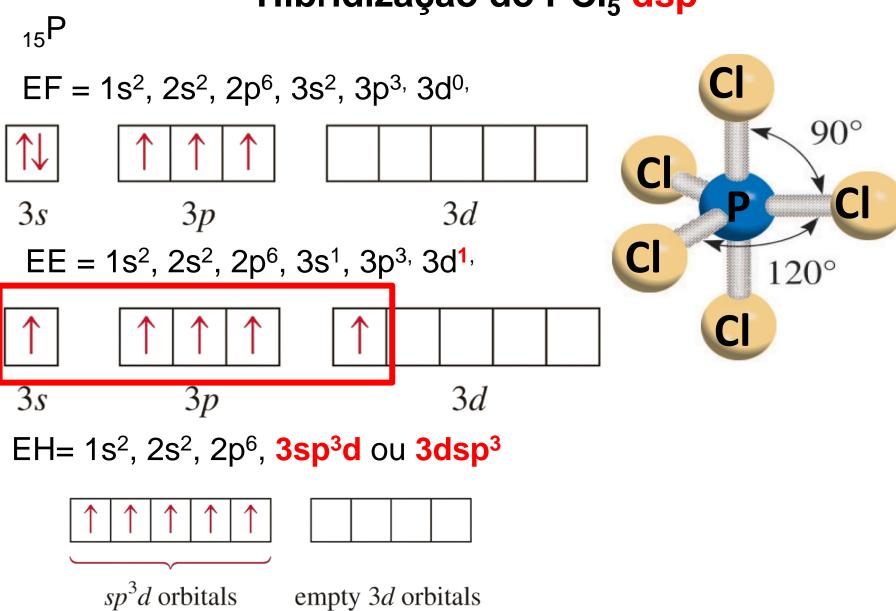
Representação dos orbitais atômicos para o etino

Hibridização sp

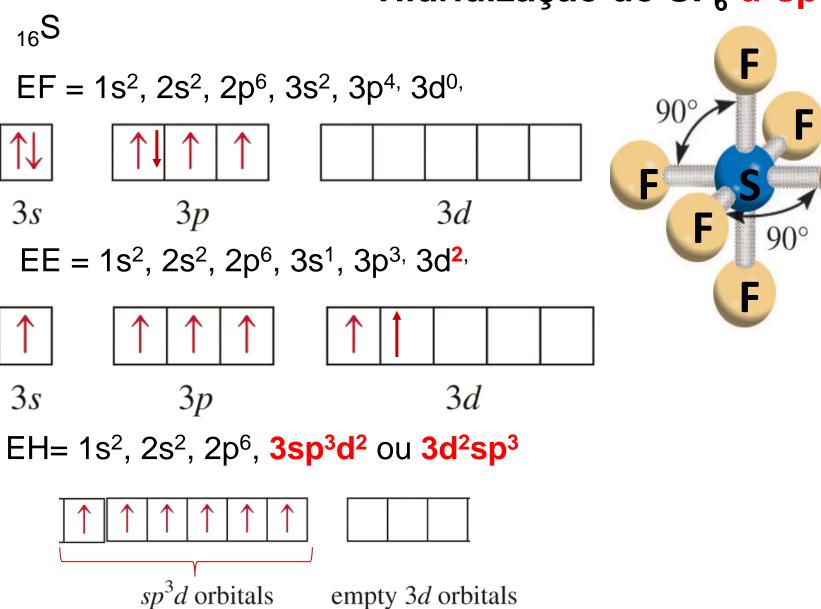
O carbono no etino está ligado a dois átomos, de modo que ele hibridiza dois orbitais – um "s" e um "p".



Representação dos orbitais atômicos para o etino


Hibridização sp

Repetindo...



Hibridização do PCI₅ dsp³

Hidridização do SF₆ d²sp³

Bibliografia:

BROWN, Theodore L.; LEMAY JR., H. Eugene; BURSTEN, Bruce E.; BURDGE, Julia R. Química: A Ciência Central. 9 ed. São Paulo: Editora Pearson Prentice Hall Inc., 2005.

BROWN, Theodore L. et al. Química: a ciência central. 13. ed. São Paulo, SP: Pearson, 2016.

Chang R. Goldsby K. Química 11^a edição, Porto Alegre, AMGH, 2013.

MAIA, Daltamir Justino e BIANCHI, J. C. de A. Química geral. 1 ed. São Paulo: Pearson, 2007.

KOTZ, John C.; TREICHEL JR., Paul M.; WEAVER, Gabriela C. **Química Geral e Reações Quimicas** - Vol. 1. 6 ed. São Paulo: Editora Cengage Learning, 2009.

ATKINS, Peter; JONES, Loretta. **Princípios de Química:** Questionando a Vida Moderna e o Meio Ambiente. 5 ed. Porto Alegre: Editora Bookman, 2012.

BROWN, L.S. e HOLME, T.A.; **Química geral aplicada à engenharia**. Tradução: Maria Lucia Godinho de Oliveira. Revisão técnica: Robson Mendes Matos. São Paulo: Cengage Learning, 2009.

Raymond Chang, Trad. 4.ed. Maria J. F. Rebelo, et. All. **Química Geral - Conceitos Essenciais**,. Porto Alegre, AMGH, 2010.