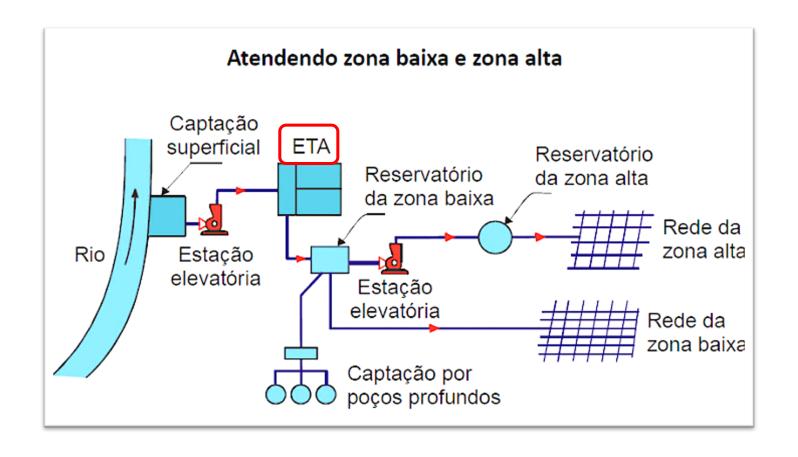
ABASTECIMENTO E TRATAMENTO DE ÁGUA

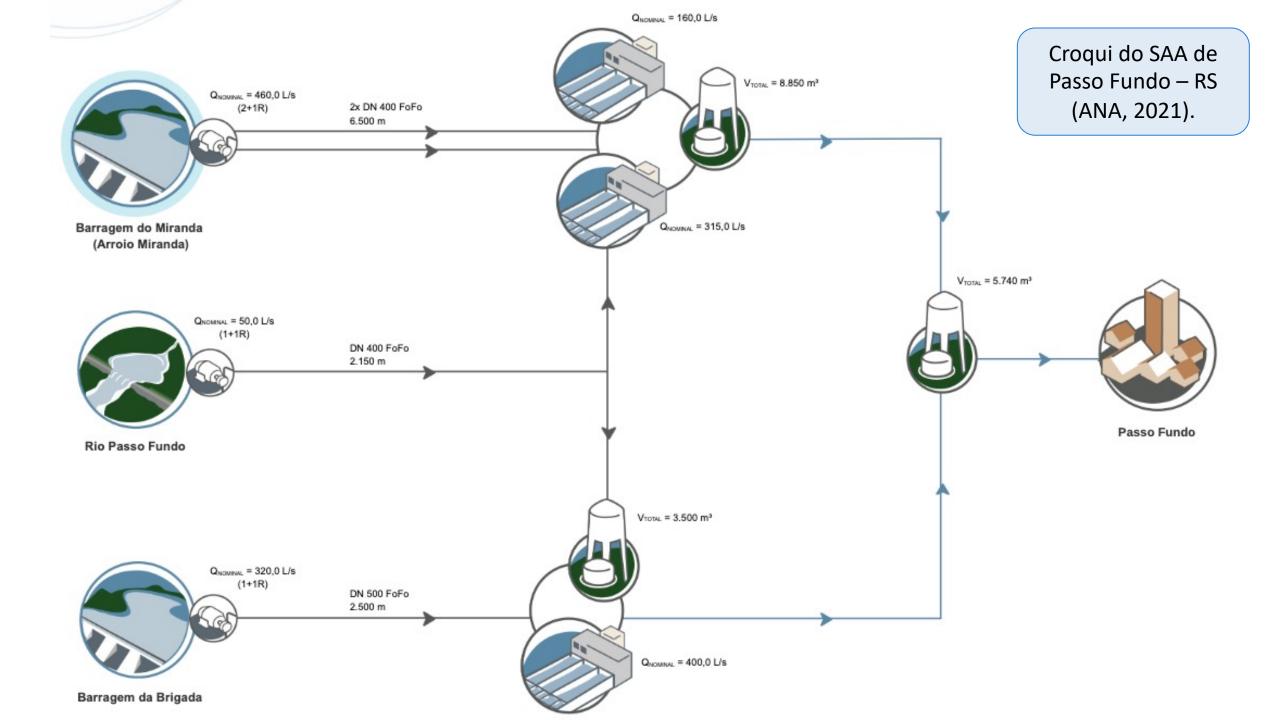
TRATAMENTO DE ÁGUA INTRODUÇÃO E TECNOLOGIAS DE TRATAMENTO

TRATAMENTO DE ÁGUA

- Introdução
- Tecnologias de tratamento
- Coagulação
- Floculação
- Decantação
- Filtração
- Desinfecção
- Tratamentos complementares

PARTES CONSTITUINTES DE UM SAA


Manancial	Corpo d'água (superficial ou subterrâneo) que fornece água para o sistema.
Captação	Conjunto de obras para retirar água (superficial ou subterrânea).
Adução	Transporta a água entre as diversas partes do sistema (bruta ou tratada). Conduto livre, forçado por gravidade ou em recalque.
Estação elevatória	Obras e equipamentos destinados a recalcar água para cotas superiores.
Estação de tratamento	Destina-se a enquadrar a água aos padrões de qualidade.
Reservatório de distribuição	Acumula a água em horários de pouco consumo para ser utilizada nos horários de maior consumo.
Rede de distribuição	Conjunto de tubulações que transportam água até os consumidores.

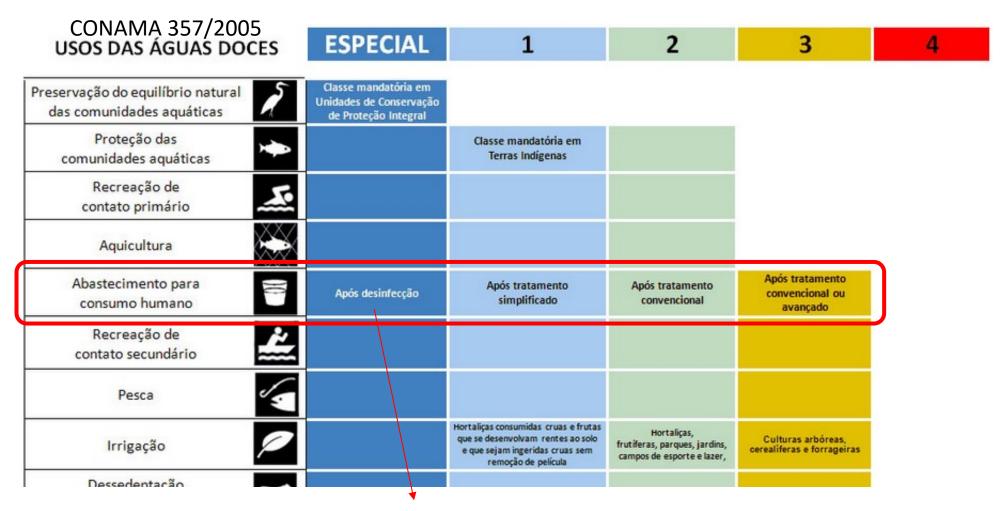

CONCEPÇÃO DE UM SAA

Normas existentes:

Norma	Número	Ano	Assunto
NBR	12211	1992	Estudos de concepção de sistemas públicos de abastecimento de água
NBR	12212	2017	Projeto de poço tubular para captação de água subterrânea
NBR	12213	1992	Projeto de captação de água de superfície para abastecimento público
NBR	12214	2020	Projeto de estação de bombeamento ou de estação elevatória de água
NBR	12215	2017	Projeto de adutora de água
NBR	12216	1992	Projeto de estação de tratamento de água para abastecimento público
NBR	12217	1994	Projeto de reservatório de distribuição de água para abastecimento público
NBR	12218	2017	Projeto de rede de distribuição de água para abastecimento público

CONCEPÇÃO DE UM SAA

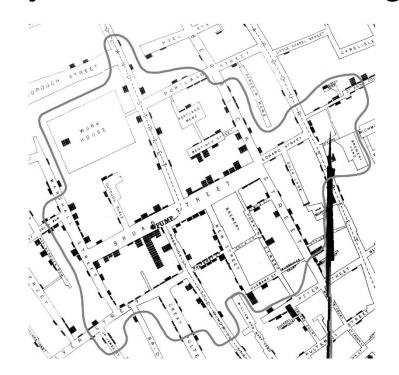
INTRODUÇÃO


• Água potável deve ser disponibilizada aos consumidores:

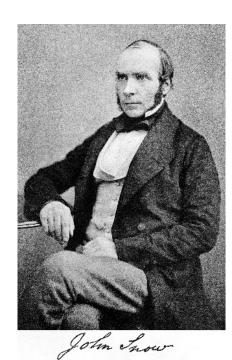
de forma contínua quantidade adequada pressão adequada qualidade adequada

Estação de Tratamento de Água (ETA): adequa a água bruta aos padrões de potabilidade para consumo humano (Portaria GM/MS nº 888/2021).

ESCOLHA DO MANANCIAL

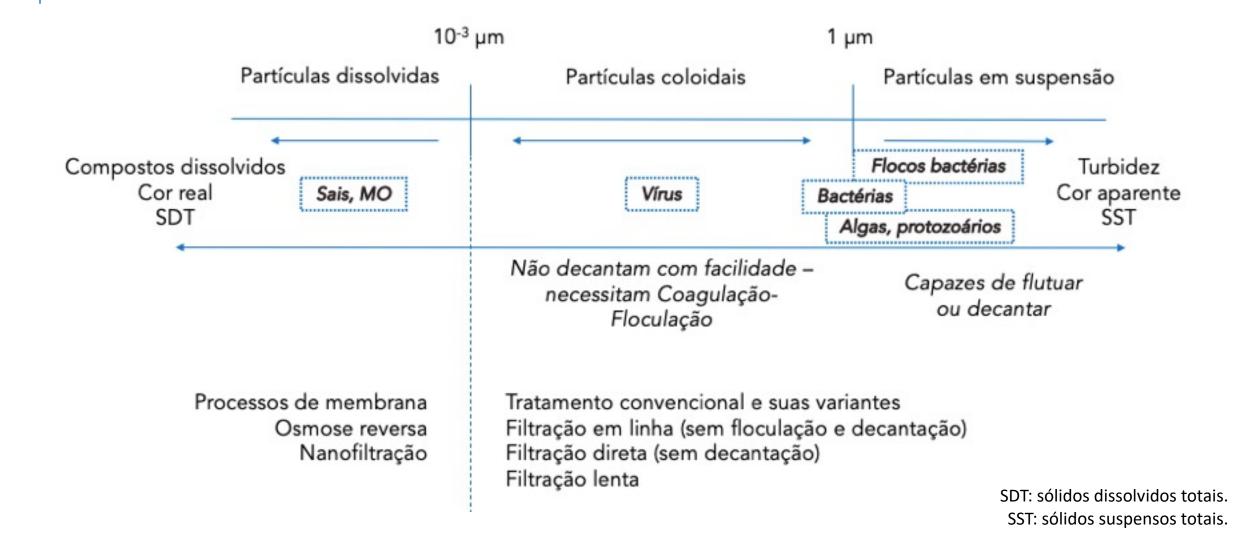

Normalmente águas subterrâneas.

- 4000 A.C.: documentos em sânscrito e grego recomendavam que águas impuras deveriam ser purificadas por fervura ou serem expostas ao sol ou purificadas por filtração em leitos de areia;
- 1500 A.C.: apresentados em gravuras egípcias artefatos confeccionados artesanalmente com a finalidade de permitirem a separação de sólidos presentes em água empregadas para consumo;
- 500 A.C.: Hipócrates (pai da medicina) recomendava a fervura e filtração da água de chuva antes do seu uso para abastecimento público;


- 300 A.C. a 300 D.C.: engenheiros romanos criaram os primeiros sistemas públicos para abastecimento de água, os grandes aquedutos;
- 500 D.C. a 1600 D.C.: Idade Média, muito pouco foi realizado em relação ao desenvolvimento de sistemas públicos de saneamento;
- 1676: o inventor holandês Anton van Leeuwenhoek concebe os primeiros microscópios;

- 1804: construção e operação dos primeiros filtros lentos em areia para tratamento de água para abastecimento público em Paisley (Escócia);
- 1807: a cidade de Glasgow (Escócia) foi uma das primeiras a distribuir água tratada por meio de tubulações;
- 1829: construção e operação de filtros lentos de areia para tratamento de água em Londres;

 1854: <u>John Snow</u> demonstra de modo empírico que a água é um veiculador de doenças, embora nada fosse conhecido até então em relação ao mundo microbiológico;

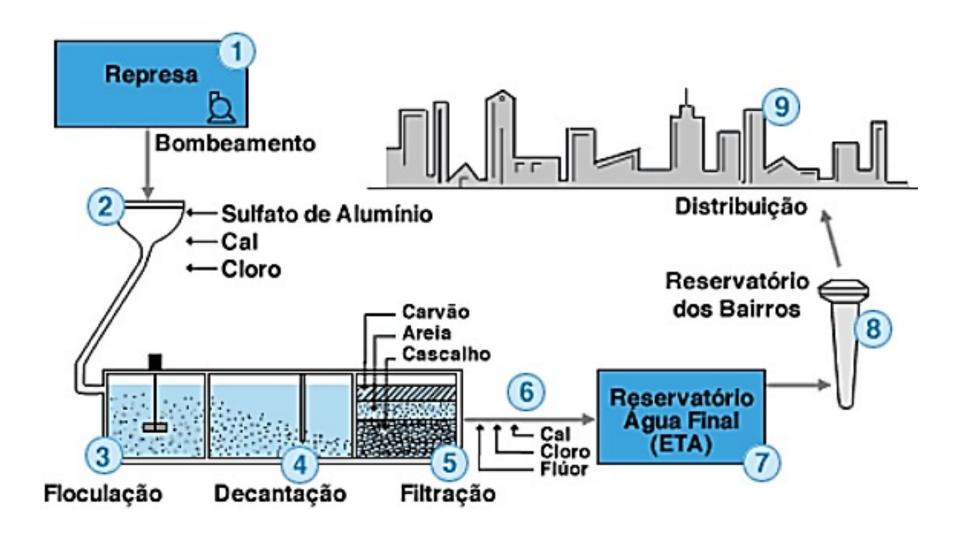


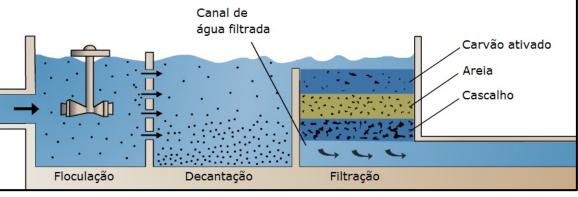
- 1870: Louis Pasteur e Robert Koch propõem a teoria dos germes e derrubam a tese de geração espontânea;
- 1881: Poder do cloro na ação desinfetante Robert Koch.
- Primeiras aplicações do cloro como agente regular no processo de desinfecção de águas para abastecimento:
 - Alemanha (1890); Inglaterra Lincoln (1905); EUA Chicago (1908);
- 1890 a 1900: houve os maiores desenvolvimentos do processo de filtração rápida Allen Hazen e George Warren Fuller.

• Há diversos sistemas de tratamento, e a sua escolha é determinada por diversos fatores:

Escolha do tratamento:	tipo de impurezas presentes, principalmente turbidez e cor (próximo slide);
	concentração afluente: função da qualidade da água no manancial, cujas análises devem cobrir todas as épocas e vários anos para avaliar a sazonalidade;
	concentração efluente desejada: redução ou remoção de determinados constituintes da água bruta;
	custos envolvidos para a sua implantação, operação e manutenção;
	forma da substância.

• De modo geral, as ETAs atualmente utilizadas no Brasil podem ser classificadas em três categorias básicas:





- São as mais empregadas no Brasil.
- Adequadas para águas turvas correntes, de turbidez média e elevada, suportando até 1.000 UNT - valores superiores a esse exigem unidades de pré-sedimentação.
- Quando a turbidez é baixa, menor que 50 UNT, por exemplo, a falta de um núcleo pesado para os flocos torna a decantação ineficiente, acarretando a sobrecarga dos filtros.

- Os processos utilizados são:
 - pré-tratamento químico para produzir um floco sedimentável, com as seguintes unidades:
 - mistura rápida (coagulação);
 - floculação, com tempo de detenção entre 20 e 40 minutos;
 - decantação, com taxa superficial (ou equivalente) de 20 a 40 m³/m².dia;
 - filtração como polimento para remover flocos residuais, em filtros comuns com até 4 metros de profundidade total.

ESTAÇÕES DE FILTRAÇÃO DIRETA

- São utilizadas em situações de baixa carga de turbidez de até 50 a 60 UNT - e, por isso, não utilizam unidades de decantação, reduzindo os seus custos, o que faz com que sejam muitas vezes empregadas indiscriminadamente.
- Elas não são viáveis quando:
 - a dosagem de coagulante é superior a 10 mg/L em sulfato de alumínio ou a 6 mg/L em cloreto férrico;
 - o índice de coliformes ultrapassar 1.000 NMP/100 mL;
 - a presença de algas exceder 1.000 UPA/mL.

ESTAÇÕES DE FILTRAÇÃO DIRETA

- Os processos utilizados são:
 - pré-tratamento químico para produzir um floco filtrável, com as seguintes unidades:
 - mistura rápida (coagulação);
 - floculação, com tempo de detenção entre 5 e 10 minutos;
 - filtração como processo único para a remoção de todos os sólidos coagulados (flocos) em unidades com profundidades superiores a 4 metros.

ESTAÇÕES DE FLOTAÇÃO A AR DISSOLVIDO

- São relativamente recentes, sendo que a primeira instalação na América foi em Joinville - SC em 1992.
- O campo de utilização é praticamente o mesmo das ETAs convencionais.
- Elas admitem cargas de turbidez de até 600 UNT, havendo casos em que unidades existentes suportaram até 4.000 UNT por períodos curtos.
- São especialmente adequadas para águas de baixa turbidez, a qualquer valor de cor, e indiferentes à presença de algas, sendo muito eficientes na sua remoção.

ESTAÇÕES DE FLOTAÇÃO A AR DISSOLVIDO

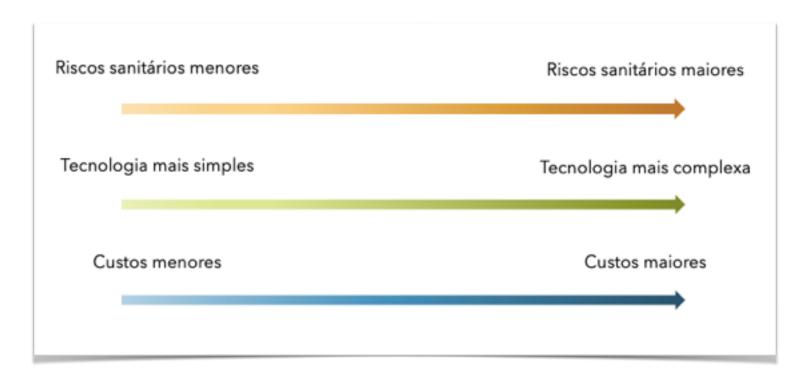
- Os processos utilizados são:
 - pré-tratamento químico para produzir um floco flutuável (flotável), com as seguintes unidades:
 - mistura rápida (coagulação);
 - floculação, com tempo de detenção entre 5 e 10 minutos;
 - flotação, com taxas de até 400 a 600 m³/m².dia;
 - filtração como polimento para remover flocos residuais, em unidades idênticas às usadas na decantação.

RESUMO

Convencional

Flotação a ar dissolvido

Floculação


Flotação

Filtração

- Os processos de tratamento não devem ser definidos apenas para a remoção de turbidez e cor, mas também em função do estado trófico do manancial, pois a sua eutrofização pode prejudicar os mais usuais. Alguns dos impactos negativos são:
 - aumento da demanda de cloro;
 - sabor e odor;
 - colmatação dos filtros por algas remanescentes dos processos de clarificação anteriores.

• De forma geral, a tecnologia e o seu custo estão intrinsecamente ligadas ao risco sanitário:

- Portanto, deve-se fazer uma análise técnico-econômica considerando o horizonte de projeto, que normalmente é de 20 anos ou mais, sendo função de:
 - processos de tratamento adotados;
 - características das comunidades a serem abastecidas;
 - condições locais e econômicas-financeiras.

- Nos projetos, deve-se considerar também:
 - a execução por etapas, objetivando reduzir os investimentos iniciais;
 - e a possibilidade de executar ampliações mesmo não programadas, prevendo espaço físico.