Funções quadráticas: problemas de otimização

Gustavo de Oliveira Rosa

17 de agosto de 2024

Função quadrática

Definição

Uma função quadrática é uma função que pode ser escrita na forma $y=ax^2+bx+c$, com $a,b,c\in\mathbb{R}$ e $a\neq 0$.

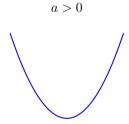
Função quadrática

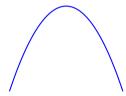
Definição

Uma função quadrática é uma função que pode ser escrita na forma $y=ax^2+bx+c$, com $a,b,c\in\mathbb{R}$ e $a\neq 0$.

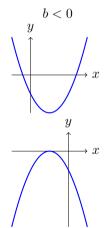
Por exemplo, $y=3x^2-x+5$, $f(x)=x^2+2x$ e $g(x)=9-x^2$ são funções quadráticas.

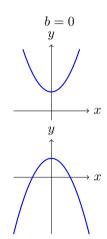
Função quadrática

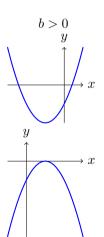

Definição


Uma função quadrática é uma função que pode ser escrita na forma $y=ax^2+bx+c$, com $a,b,c\in\mathbb{R}$ e $a\neq 0$.

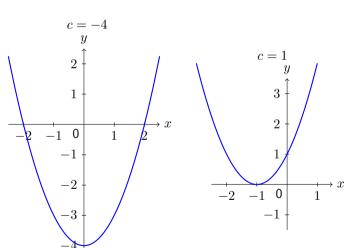
Por exemplo, $y=3x^2-x+5$, $f(x)=x^2+2x$ e $g(x)=9-x^2$ são funções quadráticas. O gráfico de uma função quadrática é uma curva chamada de parábola. Cada coeficiente influencia de uma forma no comportamento da parábola, conforme revisaremos a seguir.

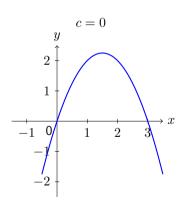

Coeficiente a


O coeficiente a indica para qual lado está voltada a concavidade da parábola.

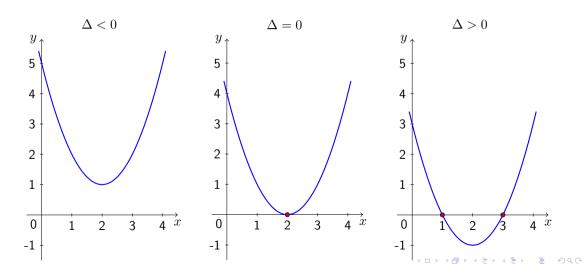


O coeficiente b indica o comportamento da parábola na intersecção com o eixo dos y.



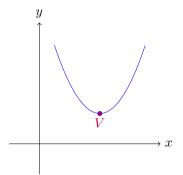


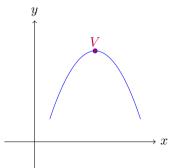
Coeficiente c


O coeficiente c indica o ponto de intersecção da parábola com o eixo dos y.

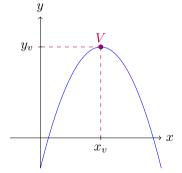
Discriminante $\Delta = b^2 - 4ac$

O sinal do discriminante (isto é, de Δ) indica quantos zeros tem a função.




Definição

O vértice da parábola é o ponto crítico. Se a parábola tem a concavidade voltada para cima, o vértice é o ponto mínimo. Já se a parábola tem a concavidade voltada para baixo, o vértice é o ponto máximo.


Definição

O vértice da parábola é o ponto crítico. Se a parábola tem a concavidade voltada para cima, o vértice é o ponto mínimo. Já se a parábola tem a concavidade voltada para baixo, o vértice é o ponto máximo.

Denotaremos as coordenadas do vértice de x_v e y_v . Para calcular a abscissa do vértice usamos a fórmula $x_v=\frac{-b}{2a}$. Para a ordenada podemos usar a fórmula $y_v=\frac{\Delta}{-4a}$ ou a substituição $y_v=f(x_v)$.

Exemplo 2.1: Calcule as coordenadas do vértice da função $f(x) = x^2 - 4x + 3$.

Exemplo 2.2: Calcule as coordenadas do vértice da função $g(x) = -2x^2 - 8x + 10$

Contexto histórico

Figura: Gottfried Wilhelm Leibniz (1646 - 1716)

Figura: Isaac Newton (1643 - 1727)

Problemas de otimização

Exemplo 3.1: Com 80 metros de cerca um fazendeiro deseja circundar uma área retangular junto a um rio para confinar alguns animais. O lado do retângulo adjacente ao rio não receberá cerca, para que os animais possam beber água. Quais devem ser as medidas do retângulo para que a área cercada seja a maior possível?

Problemas de otimização

Exemplo 3.2: Um avião de 100 lugares foi fretado para uma excursão. A companhia exigiu de cada passageiro R\$ 800,00 mais R\$ 10,00 por cada lugar vago. Para que número de passageiros a rentabilidade da empresa é máxima?

Problemas de otimização

Exemplo 3.3: João tem uma fábrica de sorvetes. Semanalmente ele vende, em média, 300 caixas de picolés por R\$ 20,00 cada. Entretanto, percebeu que, cada vez que diminuía R\$ 1,00 no preço da caixa, vendia 40 caixas a mais por semana. Quanto ele deve cobrar pela caixa para que sua receita seja máxima?

Referências

- [1] BECKER, Oskar. *O pensamento matemático:* sua grandeza e seus limites. Tradução de Helmuth Alfredo Simon. São Paulo: Herder, 1965.
- [2] LIMA, Elon Lages. *Números e funções reais*. Rio de Janeiro: SBM, 2013. (Coleção PROFMAT)

