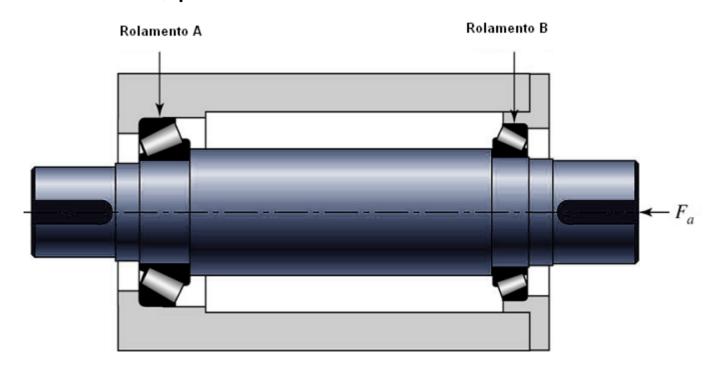

Há evidências que toras de madeira (rodas ou rolos) foram utilizadas pelos nossos ancestrais para mover objetos pesados em 4000 a.C., ou seja, esses dispositivos de transporte de cargas eram mancais de rolos lineares.

Há também evidências que mancais de esferas foram utilizados no século I a.C.

O grande impulso no desenvolvimento dos mancais de elementos rolantes ocorreu com a segunda grande guerra, porém a padronização dos mancais de rolamento ocorreu com os primeiros projetos desses elementos nos primórdios de 1900. Essa padronização foi feita mundialmente **no sistema métrico**.



- •MANCAL: Duas partes que têm movimento relativo.
- •Mancal plano: dois materiais que deslizam entre si.

[Shigley]

•Mancal de elementos rolantes: bolas de aço endurecidas ou rolos mantidos entre pistas de aço endurecidas, permitindo atrito muito baixo.

[Shigley]

MATERIAIS

•MANCAIS DE ESFERAS: aço AISI 5210 endurecidos a um alto grau.

•MANCAIS DE ROLOS: ligas de aço endurecíveis AISI 3310, 4620 e 8620.

TIPOS

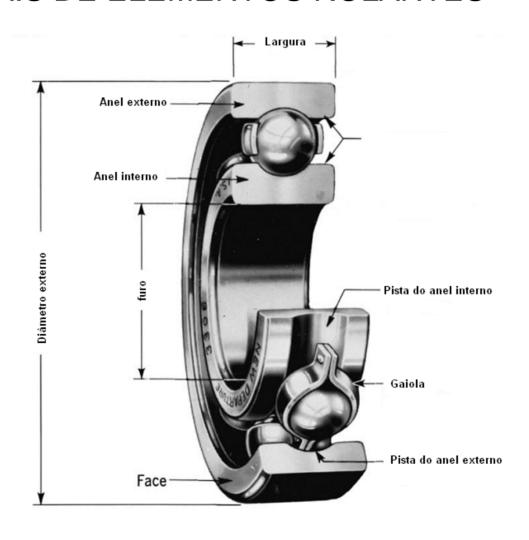
- •MANCAIS DE ESFERAS: várias esferas de aço endurecidas presas entre duas pistas, interior e exterior para mancais radiais, ou superior e inferior para mancais axiais..
- •MANCAIS DE ROLOS: rolos retos, cônicos ou abaulados que correm entre pistas.
- •Suportam cargas estáticas e dinâmicas maiores que os mancais de esferas por causa da linha de contato.
- •Mais baratos para cargas maiores e tamanhos maiores;
- •A menos que os rolos sejam afunilados ou abaulados, podem suportar cargas somente em uma direção;
- Podem ser desmontados;
- •Têm atrito maior, pois somente 1 ponto no rolo pode igualar a velocidade linear variávelsobre os raios da pista, e não devem ser utilizados em aplicações de altas velocidades.

VANTAGENS

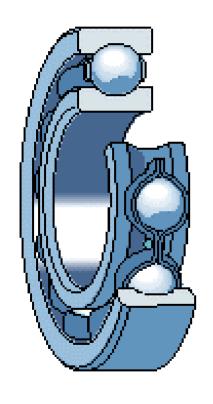
MANCAIS DE ROLAMENTO EM RELAÇÃO A DESLIZAMENTO

Atrito baixo na partida e bom durante a operação;

$$\mu_{est} \approx \mu_{din}$$


- Pode suportar cargas combinadas (axial e radial);
- •Menos sensível às interrupções de lubrificação;
- Sem instabilidade auto-excitadas;
- Boa partida em baixas temperaturas;
- Pode selar lubrificante dentro do mancal.

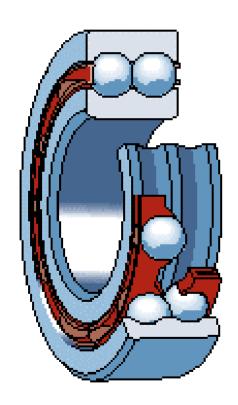
DESVANTAGENS


- Podem falhar por fadiga;
- São maiores na direção radial;
- Pouco amortecimento;
- Mais ruidosos;
- Alinhamento é crítico (alta qualidade de fabricação de eixos e carcaças);
- Mais caros;
- Maior atrito de funcionamento.

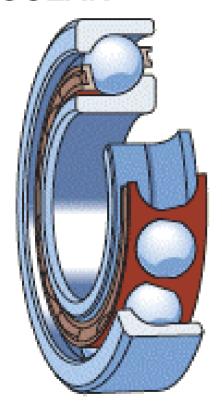
DESENHO ESQUEMÁTICO [Shigley]

•MANCAIS DE ELEMENTOS ROLANTES

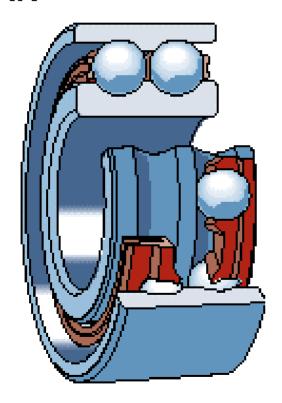
ESFERAS - CARREIRA SIMPLES



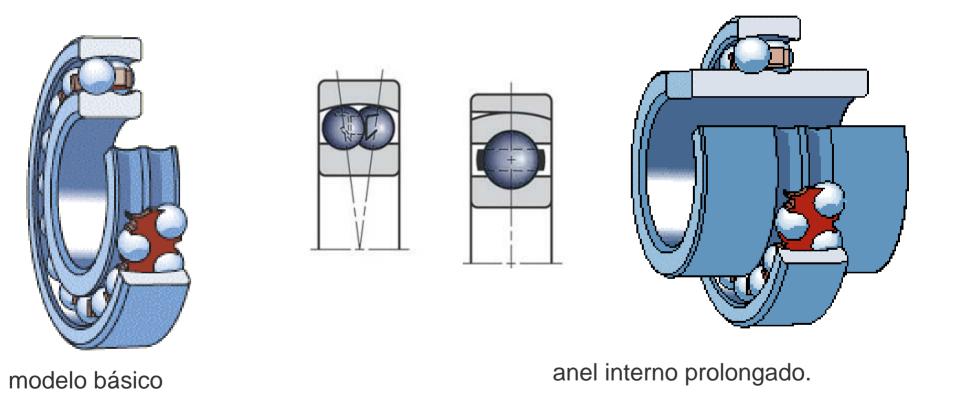
Rígido de esferas, modelo aberto.


Rígido de esferas, com vedação.

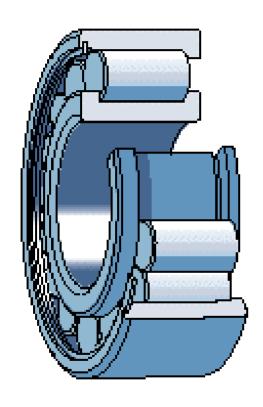
ESFERAS – CARREIRA DUPLA


Rígido de esferas, duas carreiras: maior capacidade de carga.

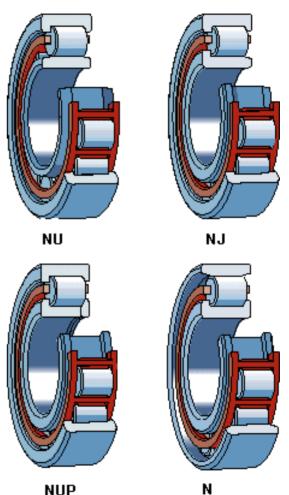
ESFERAS – CONTATO UNIDIRECIONAL OU ANGULAR


Combinação de cargas radiais e axiais.

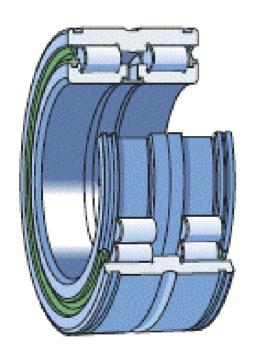
ESFERAS – CONTATO UNIDIRECIONAL OU ANGULAR

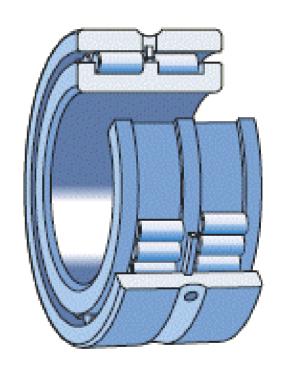

Rolamento de esferas de contato angular, duas carreiras, anel interno inteiriço.

ESFERAS – AUTO-ALINHANTES

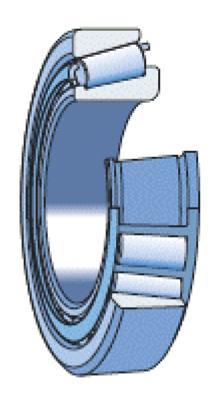


• vantagem de acomodação de desalinhamento do eixo.

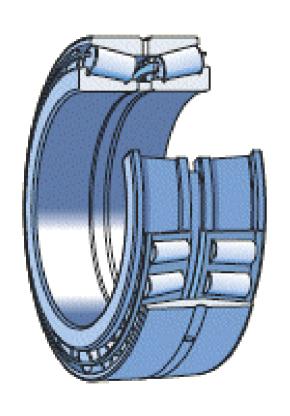

ROLOS – UMA CARREIRA

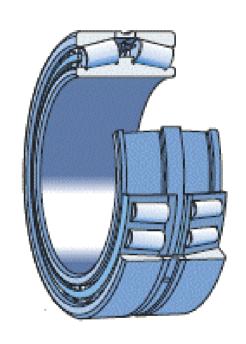

Rolamento de rolos cilíndricos com conjunto completo de rolos, uma carreira.

ROLOS – DUAS CARREIRAS



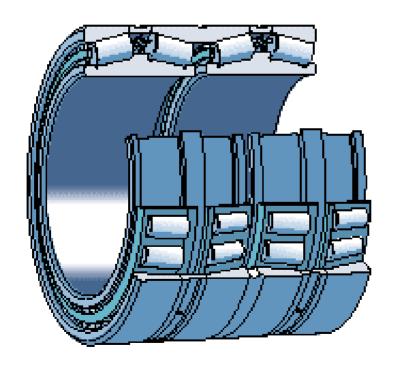
Rolamento de rolos cilíndricos com conjunto completo de rolos, duas carreiras, com vedantes de contato.


Rolamento de rolos cilíndricos com conjunto completo de rolos, duas carreiras, com flanges integrados no anel interno

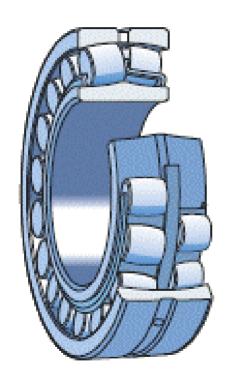

ROLOS - CÔNICOS

Rolamento de rolos cônicos, uma carreira.

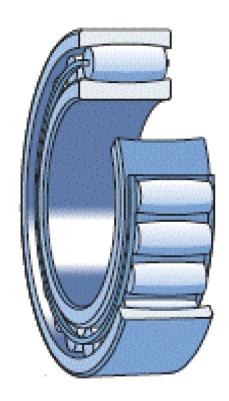
ROLOS – DUAS CARREIRAS



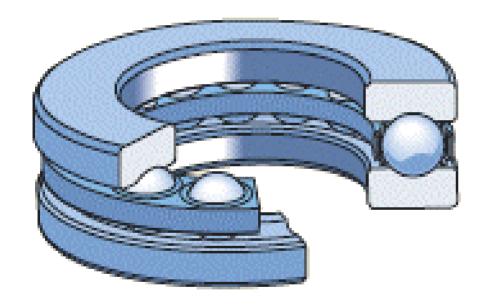
Rolamento de rolos cônicos, duas carreiras, em O.


Rolamento de rolos cônicos, duas carreiras, em X.

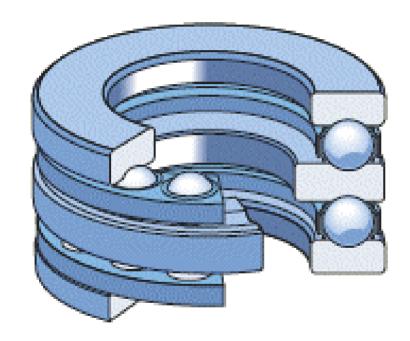
ROLOS – QUATRO CARREIRAS


Rolamento de rolos cônicos, quatro carreiras.

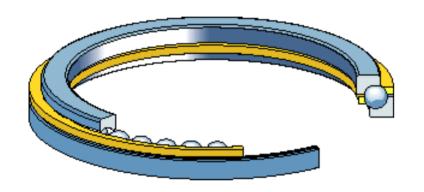
ROLOS – AUTOCOMPENSADOR

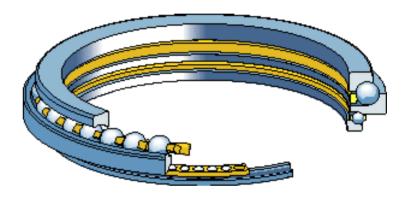

Rolamento autocompensador, de rolos.

ROLOS – AUTOCOMPENSADOR - CARB


Rolamento autocompensador, CARB (SKF).

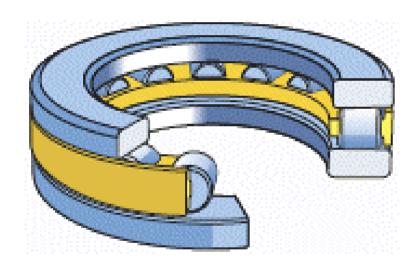
ESFERAS – ESCORA SIMPLES


Rolamento axial de esferas, escora simples, com arruela de caixa plana.

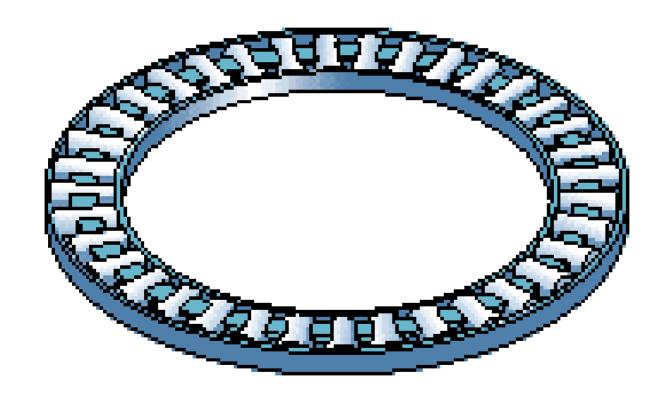

ESFERAS – ESCORA DUPLA

Rolamento axial de esferas, escora dupla, com arruela de caixa plana.

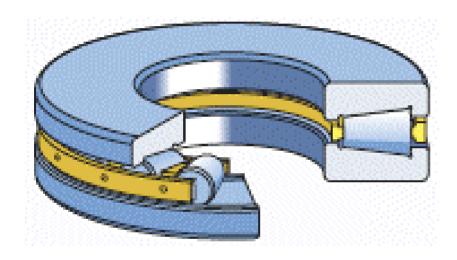
ESFERAS – CONTATO ANGULAR



Rolamento axial de esferas de contato angular, direção única.


Rolamento axial de esferas de contato angular, direção dupla.

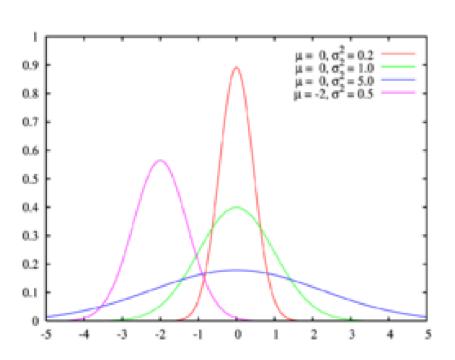
ROLOS


Rolamento axial de rolos cilíndricos, direção única.

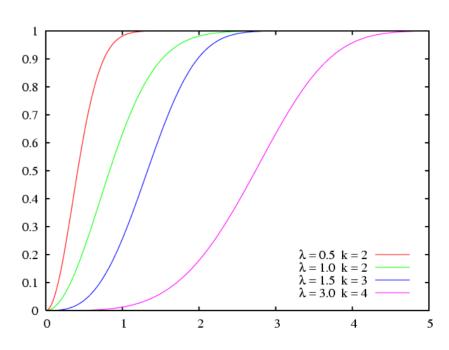
AGULHAS

Rolamento axial de agulhas.

ROLOS CÔNICOS



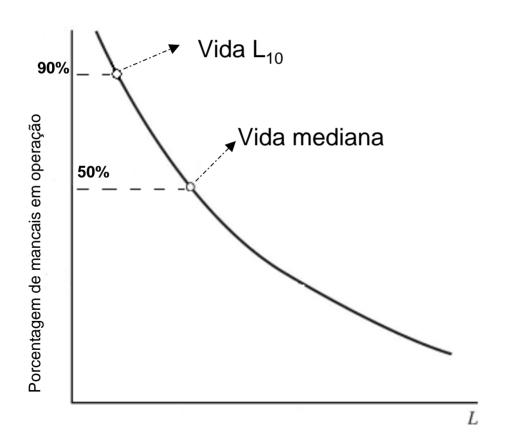
Rolamento axial de rolos cônicos.


- Se houver lubrificante limpo em quantidade suficiente, a falha dos mancais de rolamentos será por fadiga superficial.
- •Aviso audível de falha emitindo ruído e vibração.
- •Grandes amostras de mancais exibirão variação ampla de vida entre seus membros.
- •Não obedecem a distribuição Gaussiana, e sim a distribuição de Weibull.

- Não obedecem a distribuição Gaussiana, e sim a distribuição de Weibull.
- •Projetados para que 90% dos mancais (aleatórios) alcancem ou excedam suas cargas de projeto, ou 10% falhe, quando aplicada uma certa carga.

 L_{10}

$$f(x; k, \lambda) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$$



K: parâmetro de forma

λ: parâmetro de escala

VIDA DO ROLAMENTO

- •Projetados para que 90% dos mancais (aleatórios) alcancem ou excedam suas cargas de projeto, ou 10% falhe, quando aplicada uma certa carga.
- •Vida mediana de 4 a 5 vezes a vida L₁₀;

•CONFIABILIDADE

$$R = \exp\left[-\left(\frac{t}{\theta}\right)^b\right]$$

R = confiabilidade;

t = tempo;

 θ = vida de projeto;

b = expoente de Weibull.

$$R = \exp\left[-\left(\frac{L}{mL_{10}}\right)^b\right]$$

R = confiabilidade correspondente à vida L;

 L_{10} = vida nominal (R = 0,90);

m = constante de escala.

- •Como encontrar os parâmetros de Weibull?
- •Substitui-se R = 0,90 e L = L_{10} na equação a seguir:

$$0,90 = \exp\left[-\left(\frac{L_{10}}{mL_{10}}\right)^b\right] = \exp\left[-\frac{1}{m^b}\right]$$

$$\left| \ln 0.90 = -0.105360 = \ln \left\{ \exp \left[-\frac{1}{m^b} \right] \right\} = -\frac{1}{m^b} \right|$$

$$m^b = 9,49122$$

•Para R = 0,50, L=5 L_{10}

$$0,50 = \exp\left[-\left(\frac{5L_{10}}{mL_{10}}\right)^b\right] = \exp\left[-\left(\frac{5}{m}\right)^b\right]$$

$$\ln 0,50 = -0,693147 = -\frac{5^b}{m^b}$$

$$m^b = 9,49122$$

$$-0,693147 = -\frac{5^b}{9,49122}$$

$$5^b = 6,578811$$

$$b \log 5 = 0.818147$$

$$b = 1,17$$

$$m^{1,17} = 9,49122$$

$$m = (9,49122)^{\frac{1}{1,17}}$$

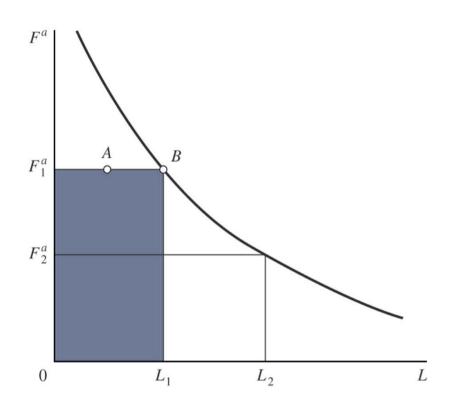
$$m = 6,844$$

•CONFIABILIDADE

$$R = \exp\left[-\left(\frac{L}{6,84 L_{10}}\right)^{1,17}\right]$$

EXEMPLO 1: Certa aplicação requer um rolamento que dure 2000 horas com confiabilidade de 99%. Qual deve ser a vida nominal do rolamento selecionado para esta aplicação?

$$0,99 = \exp\left[-\left(\frac{2000}{6,84 L_{10}}\right)^{1,17}\right]$$


$$\ln 0.99 = -0.01005 = -\left(\frac{2000}{6.84 L_{10}}\right)^{1.17} = -\frac{767.69}{\left(L_{10}\right)^{1.17}}$$

$$(L_{10})^{1,17} = 76387,06$$

$$L_{10} = 14911,5 h = 14,9(10^3)h$$

[Shigley]

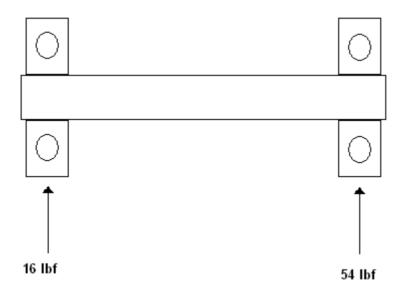
• Não obedecem a distribuição Gaussiana, e sim a distribuição de Weibull.

$$\log F$$
 $\log L$

$$\frac{L_1}{L_2} = \left(\frac{F_2}{F_1}\right)^a$$

- a = 3 para mancais de esferas;
- a = (10/3) para mancais de rolos;

$$L = \left(\frac{C}{F}\right)^{a}$$


$$C = F L^{\frac{1}{a}}$$

- •C: carga dinâmica básica de classificação para o mancal (definido pelo fabricante), definida como a carga que dará uma vida de 1 milhão de revoluções à pista interna.
- •Capacidade dinâmica de carga.
- •EXEMPLO: Para uma vida nominal de 40 milhões de revoluções para um rolamento de rolos, a capacidade dinâmica de carga deverá ser:

$$C = F \ 40^{\frac{3}{10}} = 3,02 F$$

Ou 3 vezes a carga radial real.

• Exemplo: Selecione mancais radiais de esferas para o eixo mostrado, com diâmetro de 15 mm e n = 1725 RPM.

• Hipótese: As cargas axiais são desprezíveis.

- Do catálogo do fabricante, rolamento #6302, com Diâmetro interno de 15 mm:
- C = 1930 lbfrotação máxima = 18000 RPM >>1725 RPM
- $C_0 = 1200 \text{ lbf}$
- 1) A carga estática aplicada é de 54 lbf, muito abaixo da capacidade estática do mancal;
- 2) Vida projetada: Para a carga de maior reação R=54 lbf

$$L = \left(\frac{C}{F}\right)^3 = \left(\frac{1930}{54}\right)^3 = 4,56 \cdot 10^5$$

Para a carga de menor reação R=16 lbf
$$L = \left(\frac{C}{F}\right)^3 = \left(\frac{1930}{16}\right)^3 = 1,76 \cdot 10^6$$

$$C_R = F \left[\left(\frac{L_D}{L_R} \right) \left(\frac{n_D}{n_R} \right) \right]^{\frac{1}{a}}$$

- •C_R: Capacidade dinâmica de carga correspondendo a L_R horas de vida L₁₀ a velocidade de n_R rpm;
- •F: carga radial real atuante no mancal, deve ser aplicada por L_D horas de vida L₁₀ a uma velocidade de n_D rpm.
- •D são os valores de projeto e R os valores de catálogo ou nominais.
- •Timken Engineering Journal contém tabelas de cargas nominais com 3000 horas de vida L₁₀ a 500 RPM.

[Shigley]

EXEMPLO 2: Deve-se selecionar um rolamento de rolos para suportar uma carga radial de 8 kN e ter uma vida de 1000 h, à velocidade de 1000 RPM. Qual a mínima capacidade dinâmica de carga deveria ser escollhida no Timken Engineering Journal?

$$C_R = F\left[\left(\frac{L_D}{L_R}\right)\left(\frac{n_D}{n_R}\right)\right]^{\frac{1}{a}}$$

$$C_R = 8 \left[\left(\frac{1000}{3000} \right) \left(\frac{1000}{500} \right) \right]^{\frac{3}{10}} = 7,08 \, kN$$

Relação para determinar os valores nominais catalogados correspondente a qualquer confiabilidade desejada:

$$R = \exp\left[-\left(\frac{L}{6,84\,L_{10}}\right)^{1,17}\right]$$
• L é a vida desejada para uma confiabilidade R

$$\frac{1}{R} = \exp\left[\left(\frac{L}{6,84L_{10}}\right)^{1,17}\right]$$

$$\left| \frac{1}{R} = \exp \left[\left(\frac{L}{6,84 L_{10}} \right)^{1,17} \right] \right| \ln \frac{1}{R} = \left(\frac{L}{6,84} \right)^{1,17} \frac{1}{(L_{10})^{1,17}}$$

$$L_{10} = \left(\frac{L}{6,84}\right) \frac{1}{\left[\ln(1/R)\right]^{\frac{1}{1,17}}}$$

Expressa a vida nominal correspondente a qualquer vida L com confiabilidade R.

No caso, a capacidade dinâmica de carga pode ser determinada por:

$$C_R = F\left(\left(\frac{L_D}{L_R}\right)\left(\frac{n_D}{n_R}\right)\left(\frac{1}{6,84}\right)\right)^{\frac{1}{a}} \frac{1}{[\ln(1/R)]^{\frac{1}{1,17a}}}$$

EXEMPLO 3: Qual capacidade dinâmica de carga para que o rolamento tenha uma confiabilidade de 95% ? E para 99% ? E para 99,9% ?

a)
$$C_R = 8 \left(\left(\frac{1000}{3000} \right) \left(\frac{1000}{500} \right) \left(\frac{1}{6,84} \right) \right)^{\frac{3}{10}} \frac{1}{\left[\ln(1/0,95) \right]^{\frac{3}{11,7}}}$$

$$C_R = 3,978 \frac{1}{\left[\ln(1/0,95)\right]^{\frac{3}{11,7}}} = 8,52 \, kN$$

b)
$$C_R = 3,721 \frac{1}{[\ln(1/0,99)]^{\frac{3}{11,7}}} = 12,10 \, kN$$

c)
$$C_R = 3.721 \frac{1}{[\ln(1/0.999)]^{\frac{3}{11.7}}} = 21.87 \, kN$$

SELEÇÃO DE MANCAIS DE ELEMENTOS ROLANTES

• Seleção do mancal: depende da magnitude de carga estática e dinâmica aplicadas e da vida desejada até a fadiga.

EXPERIMENTOS: a vida à fadiga L dos mancais de rolamento é inversamente proporcional à magnitudebo para mancais de esferas, e uma potência (1/3) para mancais de rolos.

$$L = \left(\frac{C}{F}\right)^3$$
 esferas

$$L = \left(\frac{C}{F}\right)^{\frac{10}{3}} \frac{\text{rolos}}{\text{rolos}}$$

- L: vida de fadiga expressa em milhões de revoluções;
- F: carga constante aplicada;
- •C: carga dinâmica básica de classificação para o mancal (definido pelo fabricante), definida como a carga que dará uma vida de 1 milhão de revoluções à pista interna.

SELEÇÃO DE MANCAIS DE ELEMENTOS ROLANTES

•C₀: carga estática básica de classificação é a carga que irá produzir uma deformação total permanente na pista e no elemento rolante em qualquer ponto de contato (0,0001. D) do elemento rolante.

SELEÇÃO DE MANCAIS DE ELEMENTOS ROLANTES [S

Rolamentos rígidos de esferas, uma carreira									Tolerâncias , ver texto ta Folga interna radial , ver to Ajustes recomendados Tolerâncias do eixo e da ca		
Dimensőes principais		Capacidade dinâmica	Capacidades de carga dinâmica estática		Velocidades Velocidade de referência	Velocidade limite	Massa	Designaçã			
d	D	В	С	C ₀	Pu				* - Rolar		
mm			kN		kN	r/min		kg	-		
3	10	4	0,54	0,18	0,007	130000	80000	0,0015	623		
3	10	4	0,54	0,18	0,007	-	40000	0,0015	623-2RS1		
3	10	4	0,54	0,18	0,007	130000	63000	0,0015	623-2Z		
3	10	4	0,54	0,18	0,007	-	40000	0,0015	623-RS1		
3	10	4	0,54	0,18	0,007	130000	80000	0,0015	623-Z		
4	9	2,5	0,54	0,18	0,007	140000	85000	0,0007	618/4		
4	9	3,5	0,54	0,18	0,007	140000	70000	0,0010	628/4-2Z		
4	9	4	0,54	0,18	0,007	140000	70000	0,0013	638/4-2Z		
4	11	4	0,715	0,232	0,0098	130000	80000	0,0017	619/4		
4	11	4	0,715	0,232	0,0098	130000	63000	0,0017	619/4-2Z		
4	12	4	0,806	0,28	0,012	120000	75000	0,0021	604		
4	12	4	0,806	0,28	0,012	120000	60000	0,0021	604-2Z		
4	12	4	0,806	0,28	0,012	120000	60000	0,0021	604-Z		
4	13	5	0,936	0,29	0,012	110000	67000	0,0031	624		
4	13	5	0,936	0,29	0,012	110000	53000	0,0031	624-2Z		
4	13	5	0,936	0,29	0,012	110000	67000	0,0031	624-Z		
4	16	5	1,11	0,38	0,016	95000	60000	0,0054	634		
4	16	5	1,11	0,38	0,016	-	28000	0,0054	634-2RS1		
4	16	5	1,11	0,38	0,016	95000	48000	0,0054	634-2RZ		
4	16	5	1,11	0,38	0,016	95000	48000	0,0054	634-2Z		
4	16	5	1,11	0,38	0,016	-	28000	0,0054	634-RS1		
4	16	5	1,11	0,38	0,016	95000	60000	0,0054	634-RZ		
4	16	5	1,11	0,38	0,016	95000	60000	0.0054	634-Z		

SELEÇÃO DE MANCAIS DE ELEMENTOS ROLANTES [S

Rolamentos rígidos de esferas, uma carreira								Folga intern Ajustes rec	, ver texto também a radial , ver texto ta omendados do eixo e da caixa
Dimens princip			Capacidade dinâmica	es de carga estática	Carga limite de fadiga	Velocidades Velocidade de referência	Velocidade limite	Massa	Designação
d	D	В	С	C ₀	Pu				* - Rolamento
mm			kN		kN	r/min		kg	-
12	37	12	10,1	4,15	0,176	45000	28000	0,060	6301 *
12	37	12	10,1	4,15	0,176	-	14000	0,060	6301-2RSH *
12	37	12	10,1	4,15	0,176	45000	22000	0,060	6301-2RSL *
12	37	12	10,1	4,15	0,176	45000	22000	0,060	6301-2Z
12	37	12	10,1	4,15	0,176	-	14000	0,06	6301-RSH *
12	37	12	10,1	4,15	0,176	45000	28000	0,060	6301-RSL *
12	37	12	10,1	4,15	0,176	45000	28000	0,060	6301-Z
12	37	17	9,75	4,15	0,176	-	14000	0,07	62301-2RS1
12,7	28,575	6,35	5,4	2,36	0,1	60000	38000	0,023	R 8
12,7	28,575	7,938	5,4	2,36	0,1	56000	28000	0,024	R 8-2Z
12,7	33,337	9,525	6,89	3,1	0,132	45000	32000	0,037	RLS 4
12,7	33,337	9,525	6,89	3,1	0,132	-	15000	0,037	RLS 4-2RS1
12,7	33,337	9,525	6,89	3,1	0,132	45000	26000	0,037	RLS 4-2Z
15	24	5	1,56	0,8	0,034	60000	38000	0,0074	61802
15	24	5	1,56	0,8	0,034	-	17000	0,0074	61802-2RS1
15	24	5	1,56	0,8	0,034	60000	30000	0,0074	61802-2Z
15	28	7	4,36	2,24	0,095	56000	34000	0,016	61902
15	28	7	4,36	2,24	0,095	-	16000	0,016	61902-2RS1
15	28	7	4,36	2,24	0,095	56000	28000	0,016	61902-2RZ
15	28	7	4,36	2,24	0,095	56000	28000	0,016	61902-2Z

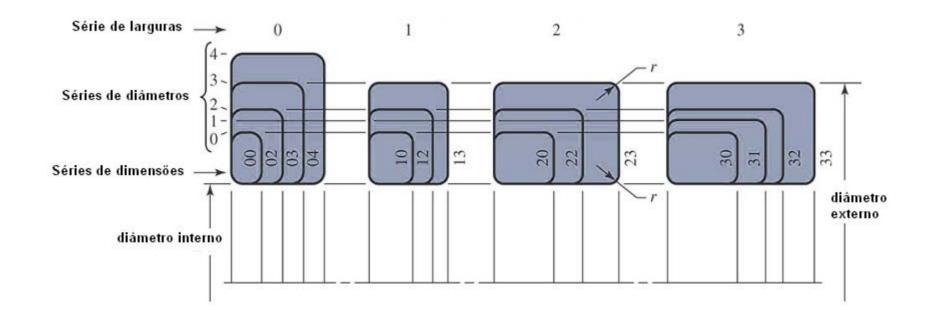
CARGA RADIAL E AXIAL COMBINADAS

• P: Carga equivalente

$$P = X V F_r + Y F_a$$

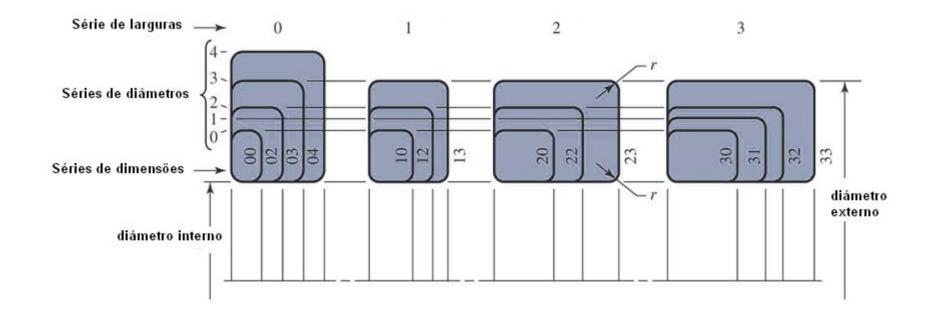
- F_r: carga radial constante aplicada;
- •F_a :carga axial constante aplicada;
- •P: Carga equivalente;
- •V: fator de rotação(V=1 anel interno rotativo e V=1,2 para anel externo rotativo);
- •X: fator radial;
- Y: fator axial;
- •X e Y: habilidade do mancal em acomodar cargas radiais e axiais, dependendo da geometria do rolamento;

$$L = \left(\frac{C}{P}\right)^3 \quad \text{esferas}$$

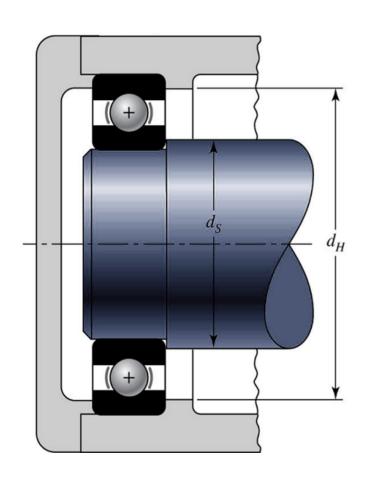

$$L = \left(\frac{C}{P}\right)^{\frac{10}{3}} \qquad \frac{\text{rolos}}{}$$

CARGA RADIAL E AXIAL COMBINADAS

Tipo de rolamento	X1	Y1	X2	Y2
Rolamentos de esfera, de contato radial	1	0	0,5	1,4
Rolamentos de esfera, de contato angular com pequena deflexão	1	1,25	0,45	1,2
Rolamentos de esfera, de contato angular com grande deflexão	1	0,75	0,4	0,75
Rolamentos de esfera, carreira dupla	1	0,75	0,63	1,25


$$P = X V F_r + Y F_a$$

- AFBMA: dimensões padronizadas para os rolamentos;
- Diâmetro interno;
- Diâmetro externo;
- Largura;
- •Tamanho dos filetes nos ressaltos do eixo e do encaixe;
- •Para um dado diâmetro interno, há uma variedade de larguras e diâmetros externos.


SELEÇÃO DE ROLAMENTOS

- AFBMA: dimensões padronizadas para os rolamentos;
- Código das séries de dimensões (dois algarismos);
- •Primeiro algarismo da série de larguras, 0, 1, 2, 3, 4, 5 e 6;
- •Segundo algarismo da série de diâmetros externos (8, 9, 0, 1, 2, 3 e 4);

•Dimensões e capacidades dinâmicas de carga para a série 02 de rolamentos de esferas

Diâmetro Interno	Diâmetro Externo	Largura	Raio do Filete	Diâmetro (1	Capacidade Dinâmica	
(mm)	(mm)	(mm)	(mm)	eixo d _s	suporte d _H	de Carga (kN)
10	30	9	0.6	12,5	27	3.58
12	32	10	0,6	14.5	28	5,21
15	35	11	0,6	17,5	31	5,87
17	40	12	0,6	19,5	34	7.34
20	47	14	1,0	25	41	9,43
25	52	15	1,0	30	47	10,8
30	62	16	1,0	35	55	14.9
35	72	17	1,0	41	65	19,8
40	80	18	1,0	46	72	22,5
45	85	19	1,0	52	77	25,1
50	90	20	1,0	56	82	26,9
55	100	21	1,5	63	90	33,2
60	110	22	1.5	70	99	40,3
65	120	23	1,5 1,5	74	109	44,1
70	125	24	1,5	79	114	47.6
75	130	25	1,5	86	119	50.7
80	140	26	2,0	93	127	55,6
85	150	28	2,0	99	136	64.1
90	160	30	2,0	104	146	73,9
95	170	32	2,0	110	156	83,7

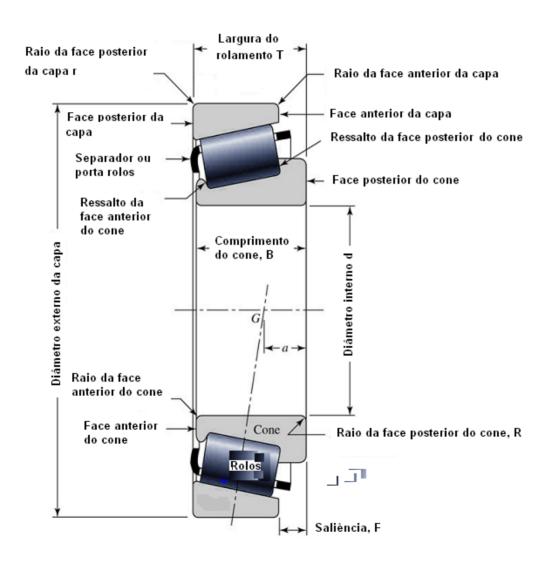
•Os diâmetros dos ressaltos do eixo e do encaixe d_s e d_H devem ser adequados para assegurar uma boa fixação para o mancal.

•Dimensões e capacidades dinâmicas de carga para rolamentos de rolos cilíndricos

	Washington and the same of the	Série 02	Série 03			
Diâmetro Interno (mm)	Diâmetro Externo			Diâmetro Externo	Largura	Carga
	(mm)	(mm)	(kN)	(mm)	(mm)	(kN)
25	52	1.0	10.0		W25	
30	62	15	10,9	62	17	23,1
35	72	16	18,0	72	19	30,3
40	80	17	26,0	80	21	39,2
45	85	18	34,0	90	23	46,3
45	83	19	35,6	100	25	63,6
50	90	20	36,9	110	27	75,7
55	100	21	45,4	120	29	92,6
60	110	22	55,6	130	31	
65	120	23	65,0	140	33	103,0
70	125	24	65,8	150	35	116,0 136,0
75	130	25	80,1	160	2.7	
80	140	26	87,2	160 170	37	162,0
85	150	28	99,7		39	163,0 196,0
90	160	30	126,0	180 190	41	
95	170	32	140,0	200	43 45	211,0 240,0
100	180	2.4	1540			
110	200	34	154,0	215	47	274,0
120	215	38	205,0	240	50	352,0
130	230	40	220,0	260	55	416,0
140		40	239,0	280	58	489,0
1 70	250	42	280,0	300	62	538,0

SELEÇÃO DE ROLAMENTOS

•Recomendações para vida de rolamentos para várias classes de máquinas. [Shigley]


Tipo de aplicação	Vida, 1000 h	
Instrumentos e aparelhos de pouco uso	até 0,5	
Motores de aviões	0,5 a 2	
Máquinas para operação curta ou intermitente onde	4 a 8	
a interrupção do serviço é de pouca importância	1 4 5	
Máquinas para serviço intermitente onde é muito	8 a 14	
importante uma operação confiável	<u> </u>	
Máquinas para 8 h de serviço diário, nem sempre utilizadas	14 a 20	
inteiramente		
Máquinas para 8 h de serviço diário, utilizadas inteiramente	20 a 30	
Máquinas para serviço contínuo de 24 h	50 a 60	
Máquinas para serviço contínuo de 24 h onde a confiabilidade	100 a 200	
é de extrema importância.		

SELEÇÃO DE ROLAMENTOS

- Fatores de aplicação de carga [Shigley];
- •Tem a mesma função dos fatores de segurança, devendo-se usá-los para aumentar-se a carga equivalente antes de selecionar um rolamento.

Tipo de aplicação	Fator de carga
Engrenamento de precisão	1,0 a 1,1
Engrenamento comercial	1,1 a 1,3
Aplicações com rolamentos selados ordinários	1,2
Máquinas sem carga de choque	1,0 a 1,2
Máquinas com carga de pequeno choque	1,2 a 1,5
Máquinas com carga de choque médio	1,5 a 3,0

SELEÇÃO DE ROLAMENTOS DE ROLOS CÔNICOS [Shigley]

- •Suporta cargas radiais e axiais (ponto G é o ponto efetivo de carga);
- •No entanto, mesmo quando uma carga axial externa não está presente, a carga radial induzirá uma reação axial no rolamento devido à conicidade;
- •Para evitar-se a separação entre as pistas e os rolos, tal carga axial deve ser anulada por uma força igual de sentido contrário;
- •Uma forma de compensar esta força é usar sempre pelo menos dois rolamentos de rolos cônicos num eixo;
- •Podem ser montados com as partes traseiras em oposição, denominada montagem indireta, ou com as frentes em oposição, denominada montagem direta.

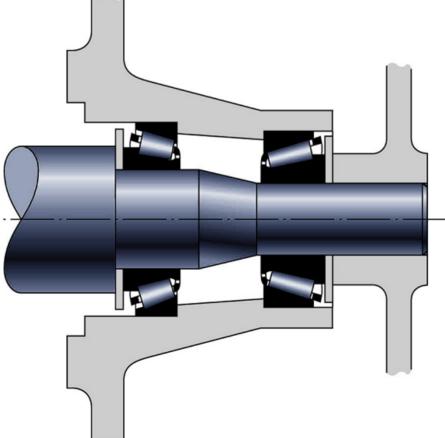
SELEÇÃO DE ROLAMENTOS DE ROLOS CÔNICOS [Shigley]

- •Nomenclatura de rolamentos de rolos cônicos difere em alguns aspectos da dos rolamentos de esferas e de rolos cilíndricos;
- Anel interno é denominado cone e o externo de anel de rolamento;
- Pode ser removido do conjunto cone-rolos;
- •Componente axial F_a produzido por uma carga puramente radial é especificado pela *Timkem* como:

$$F_a = \frac{0.47 F_r}{K}$$

•Onde K é a razão entre as capacidades nominais radial e axial do rolamento.

Cargas radiais equivalentes:


$$F_{eA} = 0.4F_{rA} + K_A \left(\frac{0.47 F_{rB}}{K_B} + T_e \right)$$

$$F_{eB} = 0.4F_{rB} + K_B \left(\frac{0.47 F_{rA}}{K_A} - T_e \right)$$

- •T_e: carga axial externa;
- •Se a carga radial real em qualquer dos mancais é maior que o valor correspondente de F_e, então usa-se a carga radial real em vez de F_e para aquele mancal.

•Exercício 10-4 – Shigley 2; Na Montagem vista, o anel de rolamento gira enquanto o cone permanece estacionário. O rolamento A está submetido a uma carga axial de 1112 N e a uma carga radial de 3892 N. O rolamento B está submetido a uma carga radial pura de 2780 N A velocidade angular é de 150 RPM. A vida L₁₀ desejada é de 90000 horas. Os diâmetros de eixo desejados são 35 mm (1.375 pol) em A e 31,8 mm em B. Selecionar rolamentos de rolos cônicos adequados, usando como fator de

aplicação a unidade.

• Como só há carga radial em B, a carga axial em A é aumentada pela carga axial induzida devido a B. Fazendo-se K = 1,5:

$$F_{eA} = 0.4F_{rA} + K_A \left(\frac{0.47 F_{rB}}{K_B} + T_e \right)$$

$$F_{eA} = 0.4(3892) + 1.5 \left(\frac{0.47(2780)}{1.5} + 1112 \right) = 4537N$$

• Como

$$\left|F_{eA}>F_{rA}
ight|$$

Usa-se a carga radial equivalente para a seleção do mancal A. A seguir, obtém-se a especificação L₁₀:

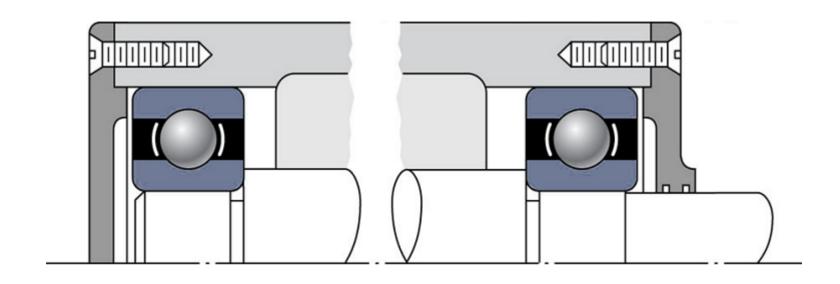
$$C_R = F \left[\left(\frac{L_D}{L_R} \right) \left(\frac{n_D}{n_R} \right) \right]^{\frac{1}{a}} = 4537 \left[\left(\frac{90}{3} \right) \left(\frac{150}{500} \right) \right]^{\frac{3}{10}} = 8763 (1969 \, lbf)$$

Usando-se esse resultado e um diâmetro interno de 35 mm seleciona-se os seguintes cones e anéis de rolamento:

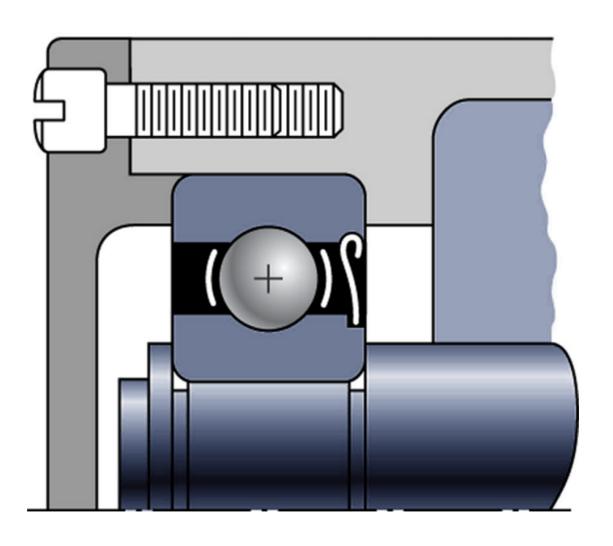
			Capacidade a 500 RPM para					
			L ₁₀ = 3000 h					
			Radial(1 carreira)	Axial	Fator K	Centro de	Número	o da parte
d	D	T(largura)	lbf	lbf	i alui ix	carga	Cone	Capa
1,25	2,3125	0,5781	1280	1040	1,23	-0,05	8125	8231
1,25	2,328	0,6250	1580	1110	1,42	-0,12	LM67048	LM67010
1,25	2,4404	0,6250	1580	1110	1,42	-0,12	LM67049A	LM67014
1,25	2,4409	0,7150	1990	1190	1,67	-0,19	15123	15245
1,25	2,4409	0,7500	1990	1190	1,67	-0,23	15125	15245
1,3125	3,0000	1,1563	3880	3630	1,07	-0,22	HM89444	HM89411
1,3125	3,4843	1,0000	3180	4250	0,75	0,09	44131	44348
1,375	2,5625	0,7100	2140	1380	1,55	-0,15	LM48548	LM48510

L₁₀ = 9523 N (2100 lbf) e K=1,55, não sendo necessário o recálculo da carga.

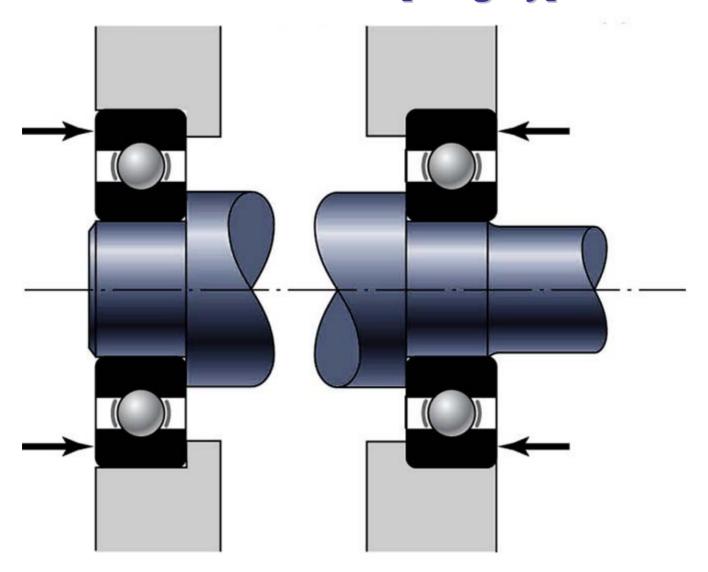
$$F_{eB} = 0.4F_{rB} + K_B \left(\frac{0.47 F_{rA}}{K_A} - T_e \right) = 0.4(2780) + 1.5 \left(\frac{0.47 (3892)}{1.55} - 1112 \right)$$


• Como
$$F_{eB} < F_{rB}$$

Usa-se F_{rB} como carga equivalente.


$$C_R = F \left[\left(\frac{L_D}{L_R} \right) \left(\frac{n_D}{n_R} \right) \right]^{\frac{1}{a}} = 2780 \left[\left(\frac{90}{3} \right) \left(\frac{150}{500} \right) \right]^{\frac{3}{10}} = 5382N (1209 \, lbf)$$

			Capacidade a 500 RPM para					
			L ₁₀ = 3000 h					
			Radial(1 carreira)	Axial	Fator K	Centro de	Número	o da parte
d	D	T(largura)	lbf	lbf	T ator K	carga	Cone	Capa
1,25	2,3125	0,5781	1280	1040	1,23	-0,05	8125	8231
1,25	2,328	0,6250	1580	1110	1,42	-0,12	LM67048	M67010
1,25	2,4404	0,6250	1580	1110	1,42	-0,12	LM67049A	LM67014
1,25	2,4409	0,7150	1990	1190	1,67	-0,19	15123	15245
1,25	2,4409	0,7500	1990	1190	1,67	-0,23	15125	15245
1,3125	3,0000	1,1563	3880	3630	1,07	-0,22	HM89444	HM89411
1,3125	3,4843	1,0000	3180	4250	0,75	0,09	44131	44348
1,375	2,5625	0,7100	2140	1380	1,55	-0,15	LM48548	LM48510


MONTAGEM [Shigley]

MONTAGEM [Shigley]

MONTAGEM [Shigley]

