EXERCÍCIOS

57. Calcule a soma dos 25 termos iniciais da P.A. (1, 7, 13, ...).

Solução

Sendo $a_1 = 1$ e r = 6, temos:

$$a_{35} = a_1 + 24 \cdot r = 1 + 24 \cdot 6 = 145$$

$$S_{25} = \frac{25(a_1 + a_{25})}{2} = \frac{25(1 + 145)}{2} = 1825.$$

58. Obtenha a soma dos 200 primeiros termos da sequência dos números ímpares positivos. Calcule também a soma dos *n* termos iniciais da mesma sequência.

Solução

A sequência (1, 3, 5, ...) é uma P.A. em que $a_1 = 1$ e r = 2, então:

$$a_{200} = a_1 + 199 \cdot r = 1 + 199 \cdot 2 = 399$$

$$S_{200} = \frac{200(a_1 + a_{200})}{2} = \frac{200(1 + 399)}{2} = 40000$$

$$a_n = a_1 + (n-1)r = 1 + (n-1) \cdot 2 = 2n-1$$

$$S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(1 + 2n - 1)}{2} = n^2$$

- 59. Qual é a soma dos números inteiros de 1 a 350?
- **60.** Qual é a soma dos 120 primeiros números pares positivos? E a soma dos *n* primeiros?
- 61. Obtenha a soma dos 12 primeiros termos da P.A. (6, 14, 22, ...).
- **62.** Obtenha a soma dos *n* elementos iniciais da seguência:

$$\left(\frac{1-n}{n}, \frac{2-n}{n}, \frac{3-n}{n}, \ldots\right)$$

63. Determine a P.A. em que o vigésimo termo é 2 e a soma dos 50 termos iniciais é 650.

Solução

Determinar uma P.A. é obter a₁ e r. Temos:

$$a_{20} = 2 \Rightarrow a_1 + 19r = 2$$
 (1)
 $S_{50} = 650 \Rightarrow \frac{50(2a_1 + 49r)}{2} = 650 \Rightarrow 2a_1 + 49r = 26$ (2)

Resolvendo o sistema formado pelas equações (1) e (2), obtemos $a_1 = -36$ e r = 2. Portanto, a P.A. procurada é (-36, -34, -32, ...).

- **64.** Qual é o 23º elemento da P.A. de razão 3 em que a soma dos 30 termos iniciais é 255?
- **65.** Uma progressão aritmética de 9 termos tem razão 2 e soma de seus termos igual a 0. Determine o sexto termo da progressão.
- 66. O primeiro termo de uma progressão aritmética é −10 e a soma dos oito primeiros termos 60. Determine a razão.
- 67. A soma dos vinte primeiros termos de uma progressão aritmética é −15. Calcule a soma do sexto termo dessa P.A. com o décimo quinto termo.
- **68.** A razão de uma P.A. é igual a 8% do primeiro termo. Sabendo que o 11º termo vale 36, determine o valor da soma dos 26 primeiros termos dessa P.A.
- **69.** Se a soma dos 10 primeiros termos de uma progressão aritmética é 50 e a soma dos 20 primeiros termos também é 50, determine o valor da soma dos 30 primeiros termos.
- 70. Um matemático (com pretensões a carpinteiro) compra uma peça de madeira de comprimento suficiente para cortar os 20 degraus de uma escada de obra. Se os comprimentos dos degraus formam uma progressão aritmética, se o primeiro degrau mede 50 cm e o último 30 cm e supondo que não há desperdício de madeira no corte, determine o comprimento mínimo da peça.
- 71. Um jardineiro tem que regar 60 roseiras plantadas ao longo de uma vereda retilínea e distando 1 m uma da outra. Ele enche seu regador numa fonte situada na mesma vereda, a 15 m da primeira roseira, e a cada viagem rega 3 roseiras. Começando e terminando na fonte, qual é o percurso total que ele terá que caminhar até regar todas as roseiras?

- 72. Numa progressão aritmética limitada em que o 1º termo é 3 e o último 31. a soma de seus termos é 136. Determine o número de termos dessa progressão.
- 73. Quantos termos devem ser somados na P.A. (-5, -1, 3, ...), a partir do 19 termo, para que a soma seja 1590?
- 74. Qual é o número mínimo de termos que devemos somar na P.A. $\left(13, \frac{45}{4}, \frac{19}{2}, \dots\right)$ a partir do 1º termo, para que a soma seja negativa?
- 75. Ao se efetuar a soma de 50 parcelas em P.A., 202, 206, 210, ..., por distração não foi somada a 35ª parcela. Qual a soma encontrada?
- 76. Determine uma P.A. de 60 termos em que a soma dos 59 primeiros é 12 e a soma dos 59 últimos é 130.
- 77. Determine uma P.A. em que a soma dos 10 termos iniciais é 130 e a soma dos 50 iniciais é 3650.
- 78. Calcule o quociente entre a soma dos termos de índice ímpar e a soma dos termos de índice par da P.A. finita (4, 7, 10, ..., 517).
- 79. Qual é a soma dos múltiplos positivos de 5 formados por 3 algarismos?

Solução

Os múltiplos positivos de 5 formados por 3 algarismos constituem a P.A. (100, 105, 110, ..., 995), em que $a_1 = 100$, r = 5 e $a_n = 995$. O número de elementos dessa P.A. é n tal que:

$$a_n = a_1 + (n-1)r \Rightarrow 995 = 100 + (n-1)5 \Rightarrow n = 180.$$

A soma dos termos da P.A. é:

$$S_{180} = \frac{180(a_1 + a_{180})}{2} = \frac{180(100 + 995)}{2} = 98550.$$

- 80. Qual é a soma dos múltiplos de 11 compreendidos entre 100 e 10000?
- 81. Qual é a soma dos múltiplos positivos de 7, com dois, três ou quatro algarismos?
- 82. Obtenha uma P.A. em que a soma dos n primeiros termos é $n^2 + 2n$ para todo n natural.

Solução

Como $S_n = n^2 + 2n$, $n \in \mathbb{N}^*$, temos:

$$S_1 = 1^2 + 2 \cdot 1 = 3 \Rightarrow a_1 = 3$$

$$S_2 = 2^2 + 2 \cdot 2 = 8 \Rightarrow a_1 + a_2 = 8 \Rightarrow a_2 = 5$$

e a P.A. é (3, 5, 7, 9, ...).

- **83.** Calcule o 1º termo e a razão de uma P.A. cuja soma dos n primeiros termos é $n^2 + 4n$ para todo n natural.
- **84.** Sendo f: $\mathbb{R} \to \mathbb{R}$, definida por f(x) = 2x + 3, calcule o valor de f(1) + f(2) + f(3) + ... + f(25).

85. Se
$$\sum_{x=5}^{n+5} 4(x-3) = An^2 + Bn + C$$
, calcule o valor de A + B.

- **86.** Se numa P.A. a soma dos m primeiros termos é igual à soma dos n primeiros termos, $m \ne n$, mostre que a soma dos m + n primeiros termos é igual a zero.
- 87. Demonstre que em toda P.A., com número ímpar de termos, o termo médio é igual à diferença entre a soma dos termos de ordem ímpar e a soma dos termos de ordem par.
- **88.** Quais as progressões aritméticas nas quais a soma de dois termos quaisquer faz parte da progressão?
- 89. Determine uma progressão aritmética de razão 1, sabendo que o número de termos é divisível por 3, que a soma dos termos é 33 e que o termo de ordem $\frac{n}{3}$ é 4.
- 90. A soma de quatro termos consecutivos de uma progressão aritmética é −6, o produto do primeiro deles pelo quarto é −54. Determine esses termos.
- **91.** Prove que, se uma P.A. é tal que a soma dos seus n primeiros termos é igual a n+1 vezes a metade do enésimo termo, então $r=a_1$.

RESPOSTAS DOS EXERCÍCIOS

23.
$$x_1 = 2\sqrt{2} - 1$$

33.
$$a_1 = -2$$

39.
$$n = 89$$

40.
$$m + n = p + q$$

42.
$$n = 25$$

44.
$$f(2) = 7$$

- 46. Demonstração
- 47. Demonstração
- **49.** 43 termos

50.
$$r = \frac{100}{13}$$

55.
$$a_6 = 30$$

56.
$$r = n - 1$$

59.
$$S_{350} = 61425$$

60.
$$S_{120} = 14520$$
; $S_n = n(n + 1)$

61.
$$S_{12} = 600$$

62.
$$S_n = \frac{1-n}{2}$$

64.
$$S_{23} = 31$$

65.
$$a_6 = 2$$

66.
$$r = 5$$

67.
$$a_6 = a_{15} = -1.5$$

68.
$$S_{26} = 1040$$

69.
$$S_{30} = 0$$

72.
$$n = 8$$

76.
$$a_1 = -\frac{3410}{59}$$
; $r = 2$

77.
$$a_1 = -\frac{1}{2}$$
; $r = 3$

78.
$$\frac{259}{262}$$

80.
$$S = 4549050$$

81.
$$S = 7142135$$

83.
$$a_1 = 5$$
; $r = 2$

84.
$$f(1) + f(2) + ... + f(25) = 725$$

85.
$$A + B = 12$$

- 86. Demonstração
- 87. Demonstração

88.
$$a_1 = k \cdot r, k \in \mathbb{Z}$$

- **89.** (3, 4, 5, 6, 7, 8)
- **90.** (-9, -4, 1, 6)
- 91. Demonstração

Capítulo III

93.
$$x = 6 - a$$

94.
$$x = 3$$

95.
$$a_4 = -\frac{1}{2}$$

96.
$$x = -\frac{1}{8}$$

97.
$$q = 3$$

98.
$$q = 2$$
; (2, 4, 8, 16)

99. P.G. alternante; q = -1

101.
$$\left(\frac{3}{8}, \frac{3}{4}, \frac{3}{2}\right)$$

103.
$$\left(\frac{1}{3}, 1, 3, 9, 27\right)$$

- **106.**6. 12 e 18
- 107. Demonstração
- 108. Demonstração
- 109. Demonstração
- 110. Demonstração

111.
$$q = \sqrt{\frac{1+\sqrt{5}}{2}}$$

112.
$$1 < q < \frac{1 + \sqrt{5}}{2}$$

114.
$$x = k\pi$$
 ou $x = \pm \frac{\pi}{3} + 2k\pi$, com *k* inteiro

116.
$$a_{100} = 2 \cdot 3^{99}$$

117.
$$a_{21} = 3^{10}$$

118.
$$a_4 = 1$$

119.
$$\sqrt{3} + 1$$

120.
$$a_1 = 64$$

121.
$$a_6 = 4\sqrt{10}$$

122.
$$a_1 = \frac{1}{16}$$
; $a_8 = 8$

123.2 termos