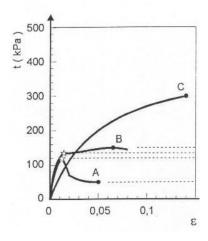
Comportamento de Alguns Solos Típicos

Prof. Maristâni G. Spannenberg F.


- Comportamento de Alguns Solos Típicos
 - Solos Cimentados
 - Solos Residuais
 - Solos Não Saturados
 - Solos Expansivos
 - Solos Colapsíveis
 - Solos Compactados

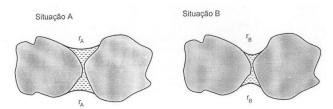
Aspectos Gerais

- Existe uma grande diversidade de solos na crosta terrestre.
- Geotecnia clássica:
 - Solos saturados e homogêneos;
 - Solos sedimentares reconstituídos, i.e., com a estrutura natural removida;
 - Materiais "bem comportados".
- A aplicação das teorias clássicas aos materiais "reais" implica na incorporação de aspectos detectados pela observação experimental.

Solos Cimentados

Comportamento na Compressão Triaxial

Solos Residuais

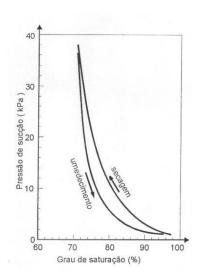

- Caracterizam-se pela heterogeneidade e anisotropia;
- Podem, no entanto, ser representados por parâmetros médios de comportamento;
- São frequentemente cimentados e não saturados.

Solos Não Saturados

- Os vazios são parcialmente ocupados pelo ar;
- Qualquer carregamento provoca uma compressão do solo e aumento da tensão efetiva, mesmo que não haja drenagem;
- A pressão no ar (u_a) é diferente da pressão na água (u_w) e a diferença é chamada pressão de sucção $(u_a u_w)$;
- $u_a > u_w$, em função do efeito membrana e da formação de meniscos capilares curvos.

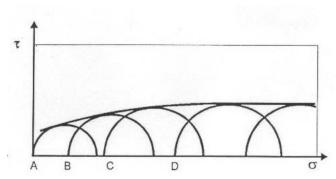
Solos Não Saturados

 Relação entre o raio de curvatura do menisco e a pressão de sucção

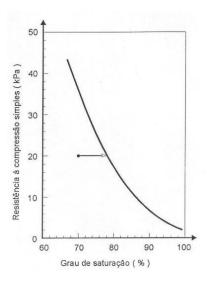

 Quando o grau de saturação diminui, os raios de curvatura dos meniscos também diminuem e a pressão aumenta.

Solos Não Saturados

- O ar e a água nos vazios podem coexistir nas seguintes formas:
 - Bolhas de ar oclusas, sem comunicação, em uma massa de água (S > 85 a 90%);
 - Canais de ar e de água intercomunicados e entrelaçados (Valores intermediários de S);
 - Canais de ar intercomunicados com a água se concentrando nos contatos entre partículas (S muito baixo).
- Nas duas últimas condições, a pressão no ar é a atmosférica e na água é negativa.


Solos Não Saturados

- Curva característica de um solo não saturado:
- Relação entre S e a pressão de sucção;
- Depende da forma como S foi atingido.

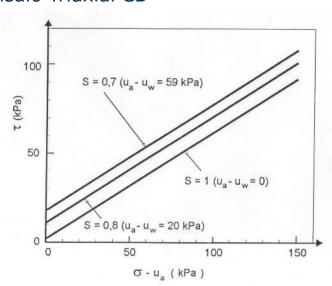


Solos Não Saturados: Ensaio Triaxial UU

 Em ensaios UU, ao aplicarem-se tensões confinantes crescentes, as tensões efetivas aumentam até que haja a saturação da amostra.

Solos Não Saturados: Ensaio Triaxial UU

- No solo saturado, a resistência é função da cimentação;
- No solo não saturado, existe uma parcela da resistência que é função da pressão de sucção.

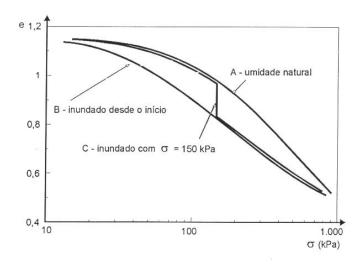

Solos Não Saturados: Ensaio Triaxial CD

- Em ensaios CD, o tempo de ensaio é reduzido porque as poro-pressões se dissipam mais rapidamente;
- A interpretação do ensaio é difícil:
 - Se S = 100%, $u_w = 0$ e $\sigma' = \sigma$
 - Se S < 100%, $u_a \neq u_w$ e $\sigma' \neq \sigma$
 - u_a e u_w não podem se anular mutuamente.

Solos Não Saturados: Ensaio Triaxial CD

- Se $u_a = pa = 0$, então $u_w < 0$
 - A tensão efetiva é maior que no solo saturado;
 - A resistência é tanto maior quanto menor for S, pois maior será a sucção.
- Se $u_w = pa = 0$, então $u_a > 0$
 - A tensão efetiva é menor que no solo saturado;
 - A resistência é menor mas a diferença é pequena para S > 80%.

Solos Não Saturados: Ensaio Triaxial CD


Solos Não Saturados: Ensaio Triaxial CU

- Quanto menor o grau de saturação S, menor o valor de \(\Delta u\) gerado no cisalhamento e maior a resistência;
- Se o solo é sobre adensado, a resistência não é tão maior que aquela obtida para o solo saturado.

Solos Colapsíveis

- São solos não saturados;
- Apresentam rápida compressão quando submetidos a um aumento do teor de umidade, mesmo sem variação das tensões totais.
- Destruição dos meniscos capilares ou amolecimento da cimentação entre as partículas.

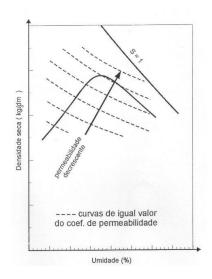
Solos Colapsíveis

Solos Colapsíveis

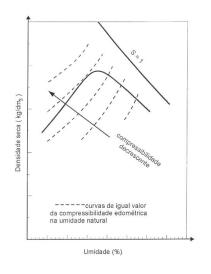
- Como conseqüência do colapso do solo podem ocorrer escorregamentos em terrenos inclinados e recalques bruscos em terrenos planos;
- Casos Históricos:
 - Argilas porosas vermelhas de São Paulo;
 - Construção da Barragem Três Irmãos no Rio Tietê com a elevação do lençol freático na cidade de Pereira Barreto, SP.

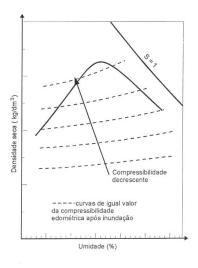
Solos Expansivos

- Solos que aumentam de volume com o aumento do grau de saturação;
- Mecanismos de expansão:
 - Interação físico-química entre os argilominerais (esmectitas) e a água nos poros;
 - Alívio de tensões totais;
 - Redução das pressões de sucção (ressecamento, solos compactados);

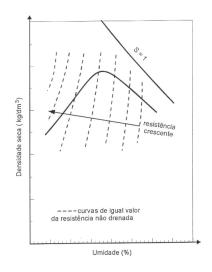

Solos Expansivos

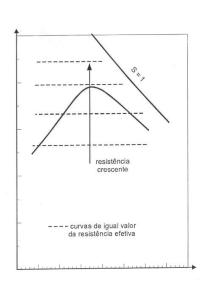
- As consequências da expansividade dos solos dependerão da pressão de expansão;
- Casos Históricos:
 - Taludes da Rodovia Carvalho Pinto em São Paulo;
 - Vila nas margens do reservatório da barragem de Itaparica, no Nordeste.


Solos Compactados


- São solos não saturados;
- O comportamento é afetado pela estrutura imposta pela compactação;
- A estrutura é função da umidade de compactação (ramo seco, umidade ótima, ramo úmido), da energia e do processo de compactação.

Solos Compactados: Permeabilidade




Solos Compactados: Adensamento

Solos Compactados: Resistência Triaxial

